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Foreword to the Special Issue on Spectral
Unmixing of Remotely Sensed Data

MORE than two decades after the first efforts toward
the application of spectral mixture analysis techniques

to remotely sensed data [1], [2], effective spectral unmixing
still remains an elusive exploitation goal. Regardless of the
available spatial resolution, the spectral signals collected in
natural environments are invariably a mixture of the signatures
of the various materials found within the spatial extent of the
ground instantaneous field view of the remote sensing imag-
ing instrument [3]. The availability of hyperspectral imaging
instruments [4] (also called imaging spectrometers [5]) with a
number of spectral bands that exceeds the number of spectral
mixture components has fostered many research efforts. Spec-
tral unmixing has been a very active research area in recent
years since it faces important challenges [6], [7].

In order to present the state-of-the-art and most recent devel-
opments in this area, it is our great pleasure to introduce this
special issue on Spectral Unmixing of Remotely Sensed Data
of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING. The special issue is the first one of its kind in the
literature since this topic has not been addressed in the form
of a dedicated monograph in any other journal in the past. The
special issue brings together distinguished experts to provide a
remarkable sample of latest-generation techniques in the field.
A large number of submissions (45) were received for this
special issue, of which 20 papers were selected after rigorous
review. In the remainder of this foreword, we review key issues
and topics of current interest related to spectral unmixing that
are covered by this special issue.

A. Linear and Nonlinear Spectral Unmixing

Linear spectral unmixing [8] is a standard technique for
spectral mixture analysis that infers a set of pure spectral
signatures, called endmembers [9], [10], and the fractions of
these endmembers, called abundances [11], in each pixel of
the scene. This model assumes that the spectra collected by the
imaging spectrometer can be expressed in the form of a linear
combination of endmembers, weighted by their corresponding
abundances. Because each observed spectral signal is the result
of an actual mixing process, it is expected that the driving abun-
dances satisfy two constraints, i.e., they should be nonnegative
[12] and the sum of abundances for a given pixel should be
unity [13]. Although the linear model has practical advantages,
such as ease of implementation and flexibility in different
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applications, nonlinear unmixing describes mixed spectra (in
physical [14], [15], or statistical [16] sense) by assuming that
part of the source radiation is multiply scattered before being
collected at the sensor. The distinction between the linear
and the nonlinear unmixing has been widely studied in recent
years [17].

In this special issue, several contributions are directly related
to these topics. In [18], improvements over fully constrained
least squares techniques for linear spectral unmixing [11] are
discussed. In [19], a new component analysis-based strategy
for linear spectral unmixing is presented. These techniques
assume that all endmember signatures are available in advance.
In the case that this requirement is not satisfied, partial unmix-
ing has emerged as a suitable alternative to solve the abun-
dance estimation problem. One widely used partial unmixing
technique is mixture-tuned matched filtering (MTMF), which
is described in detail in another contribution of this special
issue [20]. Additional results of MTMF are also illustrated
for the Cuprite Mining District, Nevada, USA, on this special
issue cover.

Finally, two new techniques for nonlinear spectral unmixing
are also introduced in this special issue. In [21], a generalized
bilinear model and a hierarchical Bayesian algorithm for non-
linear unmixing of hyperspectral images are proposed, follow-
ing previous efforts on the application of Bayesian techniques
to spectral unmixing [22], [23]. In [24], a novel approach based
on neural networks for the extraction of pixel abundances from
hyperspectral data is developed. This work expands over pre-
vious efforts in the literature focused on using neural networks
for nonlinear unmixing purposes [25]–[28].

B. Endmember Determination and Pure Class Modeling

Early approaches to endmember determination were prin-
cipally manual [29], [30]. More recent development of auto-
matic or semiautomatic endmember extraction algorithms has
resulted in significant steps forward. While many available
approaches associate a single spectral signature to each end-
member, multiple endmembers have also been used to ac-
count for within (pure) class spectral variation [31]–[34].
When multiple spectra are used to represent a pure class,
the term endmember refers to all spectra in the modeled
pure class.

Notwithstanding the importance of multiple endmember-
based approaches, a majority of algorithms have been designed
under the pure pixel assumption, i.e., they assume that the
remotely sensed data contain one pure observation for each
distinct material present in the scene. This allows validation
of extracted endmembers with regard to reference signatures
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using different distance metrics [35]. Perhaps, due to their ease
of computation and clear conceptual meaning, these are the
most widely used class of algorithms for endmember deter-
mination, with a plethora of algorithms designed under this
assumption (see [36]–[61], among several others). It should be
noted, however, that some of the aforementioned algorithms
require a dimensionality estimation step [62]. Under the linear
mixture assumption, this amounts to estimating the number of
endmembers [63], [64].

This special issue includes two new contributions on end-
member determination under the pure pixel assumption. In
[65], a new algorithm is developed for this purpose based on
discrete particle swarm optimization concepts. In [66], the well-
known N-FINDR endmember extraction algorithm originally
developed in [41] is revisited, and two new algorithms are
derived from alternative optimization strategies, namely, alter-
nating optimization and successive optimization.

C. Endmember Determination Without Pure
Pixel Assumption

Although the maximum volume procedure adopted by
N-FINDR and related algorithms is successful when pure
signatures are present in the data, given the available spatial
resolution of state-of-the-art imaging spectrometers and the
presence of the mixture phenomenon at different scales (even at
microscopic levels), in some cases, the pure pixel assumption
may not be valid. To address this issue, several endmember
determination techniques have been developed without assum-
ing the presence of pure signatures in the input data. These
methods aim at generating virtual endmembers [67] (not nec-
essarily present in the set comprised by input data samples) by
finding the simplex with minimum volume that encompasses all
observations [68]–[73].

In this special issue, a new minimum-volume enclosing
algorithm is developed [74]. It accounts for the noise effects in
the observations by employing chance constraints and improves
over a previously developed algorithm [72].

D. Incorporation of Spatial Information Into Endmember
Determination and Spectral Unmixing

Most of the techniques discussed so far for endmember
determination and spectral unmixing rely on the exploitation of
spectral information alone. However, one of the distinguishing
properties of remotely sensed data is the multivariate informa-
tion coupled with a 2-D (pictorial) representation amenable to
image interpretation. Subsequently, unmixing techniques can
benefit from an integrated framework in which both the spectral
information and the spatial arrangement of pixel vectors are
taken into account. This aspect has been widely studied in the
unmixing literature [75]–[81].

In this special issue, four contributions are directly related
with this issue, including the development of new techniques
for spatial–spectral endmember determination [82], [83] and
the incorporation of spatial information into hyperspectral im-
age unmixing [84], [85].

E. Sparse Regression-Based Unmixing

A recently developed approach to tackle the problems related
to the unavailability of pure spectral signatures is to model
mixed pixel observations as linear combinations of spectra from
a library collected on the ground by a field spectroradiometer.
Unmixing then amounts to finding the optimal subset of signa-
tures in a (potentially very large) spectral library that can best
model each mixed pixel in the scene [86]. In practice, this is a
combinatorial problem that calls for efficient sparse regression
techniques based on sparsity-inducing regularizers since the
number of endmembers participating in a mixed pixel is usually
very small compared with the (ever-growing) dimensionality
and availability of spectral libraries.

In this special issue, two contributions are provided on the
topic of sparse regression applied to spectral unmixing. In [87],
a new method for subpixel modeling, mapping, and classifi-
cation of hyperspectral images is presented. It uses learned
block-structured discriminative dictionaries [88], where each
block is adapted and optimized to represent a specific material
in a compact and sparse manner. A spatial–spectral coherence
regularizer is also applied. In [89], a sparsity constraint is
included in nonnegative matrix factorization, a widely used
technique to unmix hyperspectral images and recover the mate-
rial endmembers [90], [91].

F. Unmixing of Remotely Sensed Data With Moderate
Spectral Resolution

Although most of the techniques discussed so far have been
designed to unmix remotely sensed hyperspectral scenes with
a large number of spectral bands, such as those provided by
the National Aeronautics and Space Administration (NASA)
Airborne Visible/Infrared Imaging Spectrometer [92] or the
Hyperion instrument onboard the Earth Observing 1 satellite
[93], the unmixing of scenes with moderate spectral resolution
is also of high interest, as high spectral resolution data are not
always available.

In this special issue, two contributions deal with this relevant
issue. In [94], a new method to unmix remotely sensed data
collected by NASA’s moderate resolution imaging spectrometer
is presented. In [95], a time series of images collected by
the European Space Agency’s Medium Resolution Imaging
Spectrometer is unmixed, both for each image and also by
layer stacking all the images in the time series, thus addressing
multitemporal spectral unmixing problems.

G. Connections Between Spectral Unmixing
and Classification

Spectral unmixing and hard classification methods [96], [97]
can be seen as complementary techniques since the latter are
more suitable for the classification of pixels dominated by
a single land cover class, while the former are devoted to
the analysis of mixed pixels and can be seen as a form of
soft classification. Because remotely sensed images contain
areas with both pure and mixed pixels, the combination of
these two techniques provides an interesting analysis approach.
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This topic has been explored in previous contributions [33],
[98]–[100].

In this special issue, the contribution [101] addresses
this synergistic data processing trend by developing a new
unmixing-to-classification conversion model that treats the
abundance quantification task as a classification problem.

H. Applications of Spectral Unmixing

Numerous applications related to the monitoring of the en-
vironment and the retrieval of biogeophysical parameters have
been addressed using spectral unmixing techniques, covering
(to name a few) vegetative [102]–[104], soil [105]–[107], ur-
ban [108]–[110], and planetary [111]–[113] surfaces. Three
application-oriented contributions are included in this special
issue. In [114], the retrieval of canopy closure and leaf area
index from Moso bamboo (an important forest type in sub-
tropical areas of China) is investigated through linear spectral
unmixing. In [115], the capability of spectral unmixing for ana-
lyzing hyperspectral images from Mars is explored. In [116],
the unmixing of atmospheric trace gases from hyperspectral
satellite data is addressed.

Combined, the different topics included in this special issue
provide an excellent snapshot of the state of the art in the
area of spectral unmixing, offering a thoughtful perspective on
the potential and emerging challenges of applying unmixing
techniques to different types of remotely sensed data. The Guest
Editors would like to take this opportunity to gratefully thank
the Editor-in-Chief, Prof. Christopher S. Ruf, for his constant
support and encouragement to this special issue. The Guest
Editors also gratefully thank all the contributors and reviewers
who participated in the evaluation of manuscripts for the special
issue. Without their outstanding contributions, the special issue
could not have been completed.
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