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Abstract—Many powerful pansharpening approaches exploit
the functional relation between the fusion of PANchromatic (PAN)
and MultiSpectral (MS) images. To this purpose, the modulation
transfer function of the MS sensor is typically used, being eas-
ily approximated as a Gaussian filter whose analytic expression
is fully specified by the sensor gain at the Nyquist frequency.
However, this characterization is often inadequate in practice. In
this paper, we develop an algorithm for estimating the relation
between PAN and MS images directly from the available data
through an efficient optimization procedure. The effectiveness
of the approach is validated both on a reduced scale data set
generated by degrading images acquired by the IKONOS sen-
sor and on full-scale data consisting of images collected by the
QuickBird sensor. In the first case, the proposed method achieves
performances very similar to that of the algorithm that relies upon
the full knowledge of the degrading filter. In the second, it is shown
to outperform several very credited state-of-the-art approaches for
the extraction of the details used in the current literature.

Index Terms—Data fusion, deconvolution, modulation transfer
function (MTF), pansharpening, remote sensing.

I. INTRODUCTION

IN RECENT years, pansharpening has become a task of great
importance in the field of data fusion, as demonstrated by

the increasing number of scientific contributions to this topic
and by the success of a contest issued by the IEEE Geoscience
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and Remote Sensing Society [1]. Pansharpening addresses the
fusion of two optical remote sensing images characterized by
different spectral and spatial features. Specifically, a MultiSpec-
tral (MS) image with high spectral but low spatial resolution
is considered along with a PANchromatic (PAN) image, which
is obtained by sensing a single wide electromagnetic spectrum
covering the visible and near infrared (VNIR) frequencies and
has complementary characteristics with respect to MS: lower
spectral but greater spatial resolution.

The objective of pansharpening algorithms is the generation
of a fused product characterized by the spectral content of the
MS image and the spatial details of the PAN image. The product
generated by pansharpening finds its use in many applications.
In particular, the demand for these products is becoming more
frequent both for user-oriented commercial products, such as
Google Earth and Microsoft Bing Map, and as a preliminary
step for many automated signal processing methodologies (e.g.,
change detection [2]). Since a single imaging device is not able
to achieve both the required spectral and spatial performances
in resolution due to physical constraints and practical reasons
(e.g., limited onboard storage capabilities), a raw data fusion
step is mandatory.

Nowadays, many pansharpening algorithms exist in the liter-
ature. It is possible to group them into two main families [3]:
1) the methods based on the projection of the MS image into a
new space and the substitution of a component with a histogram
matched version of the PAN image (the so-called Component
Substitution class) and 2) the approaches based on the extrac-
tion of spatial details from the PAN image and their injection
into the MS one (this class is called MultiResolution Analysis
because details are usually obtained through a multiscale de-
composition of the original image). Popular examples of the
former are intensity–hue–saturation [4], principal component
analysis [5], [6] and Gram–Schmidt (GS) [7] techniques, while
examples of the latter are simple spatial low-pass filters such
as Box filters [4] or more complex decompositions based on
Laplacian [8] or wavelet transformations [9]. A more system-
atic overview of pansharpening methodologies belonging to
these two categories can be found in [3] and [10]. Moreover,
in the last years, approaches that do not fit in this classification
have started to appear in the literature. Among those, we can
list Bayesian methods based on parameter estimation [11], total
variation penalization terms [12], and sparse signal representa-
tion (or compressive sensing theory) [13], [14].

This paper is focused on a particular issue that is crucial
in many pansharpening approaches: the characterization of the
relationship between the MS and the PAN image through the
modulation transfer function (MTF) of the MS sensor. We
recall that the MTF is defined as the absolute value of the
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Fourier transform of the sensor’s point spread function (PSF).1

In this regard, the lower spatial resolution of the MS with
respect to the one of the PAN can be modeled as the effect
of a convolution of the former with a filter having the MTF as
amplitude response. This assumption relies upon the hypothesis
of ideality of the frequency response of the PAN sensor (i.e., it
does not introduce any blur) and of the interpolation applied
to the MS for upsampling. The well-established pansharpening
technique described in [15] is based on this model. In more
details, this technique employs a classical scheme consisting
of two parts: 1) detail extraction, in which the spatial content
missing in the MS is extracted from the PAN image, and
2) detail injection, in which such information is introduced into
the MS image. Specifically, in [15], the suitability of using a
filter matched to the MS sensor’s MTF for detail extraction
is justified by the purpose of restoring all the spatial details
not resolved by the MS but visible in the PAN. Knowing the
relation between the MS and the PAN is also necessary to
pansharpening algorithms that require a version of the PAN
image at the resolution of the original MS image, such as the
band-dependent spatial detail [16], or the GS mode 2 [7]. In
addition, we cite the approach recently proposed in [17] and
based on compressive sensing theory [18], which exploits the
PAN–MS relationship for ensuring the consistency of the high
resolution dictionary with the low resolution available data.
Moreover, even some quality assessment procedures rely on the
knowledge of this relation [19].

The design of a filter matching the real (and unknown) MTF
is not straightforward. Gaussian-shaped filters are usually em-
ployed to reproduce the MTF of the MS [20], [21], whose form
closely resembles a Normal bell in many optical acquisition
systems [20]. Thus, in this approximation, the definition of the
filter response is given by the setting of a single parameter
(i.e., the standard deviation). Usually, the value of the standard
deviation of the filter is determined from the gain at the Nyquist
frequency since this latter is often provided by the sensor’s
manufacturer (derived by construction specifications or, more
properly, by onboard measurements) [15], [21]. Alternatively,
“à trous” wavelet transforms have been also used for modeling
the MTF [22]. Indeed, it was seen that, when these filters are
designed for matching the sensor specifications, their shape
becomes very close to a Gaussian [15].

A. Motivations

Unfortunately, in many cases, resorting to the gain at the
Nyquist frequency does not lead to a specification of the sensor
MTF with the desirable accuracy. A first issue concerns the
modeling of the MTF by a Gaussian-shaped filter, which is
sometimes unconfirmed in practice. Even when it constitutes
a reasonable approximation, its specification through the MTF
gain at the Nyquist frequency is not always possible since it
is unavailable for many sensors. Even when available, the gain
at the Nyquist frequency provided by the sensor manufacturer
has typically been measured just after the launch of the sen-
sor. However, due to the aging of the optical and electronics

1The PSF is the inverse Fourier transform of the optical transfer function,
which is the product between the phase transfer function (PTF) and the MTF.

payload, this may change. A final concern regards the symmetry
hypothesis of the MTF; in fact, for several sensors, the MTF
shape varies between the along-track and cross-track directions
[23], and thus, it cannot be fully characterized through the
single value of the standard deviation [15].

In this paper, we propose to estimate the MTF by modeling
the relation between the PAN and the MS image directly from
the data in order to overcome the aforementioned limitations.
To the best of our knowledge, the pansharpening literature
lacks in methods that propose to estimate the filter used for the
extraction of the PAN details only by considering the images
themselves. The comparison between the proposed approach
and those based on the determination of the MTF from the
sensor knowledge is thus a very intriguing topic to investigate.

In order to perform the estimation of the filter, we assume that
each MS band is a spatially degraded version of the PAN image,
all blurred by the same filter, and we model the estimation as a
problem of blind image deblurring. We recall that blind image
deblurring, a classical challenge in image processing, is the
inverse problem of recovering sharp images from degraded ones
by both estimating the blur affecting the image and the target
high resolution (deblurred) image. In general, this problem is
hard to solve since it is ill-posed (i.e., there are multiple pairs
of estimated image and blurring operator that can produce the
degraded image) and the blurring operators are usually very ill-
conditioned in practice. For these reasons, in order to obtain
a well-defined solution, additional hypotheses (or a priori
information) about the original image and/or the blurring op-
erator are needed. The problem can thus be recasted into the
Bayesian framework or as a regularization problem, both lead-
ing to a similar optimization problem form (please refer to [24]
and [25] and to the more recent paper [26] for a review of the
topic). In this paper, only the estimation of the blurring operator
is required (i.e., the filter approximating the MTF of the MS
sensor), thus making the solution of the problem significantly
simpler.

B. Contribution and Outline

Starting from the motivations presented earlier, the objectives
of this paper are as follows: 1) provide an estimation procedure
for the degradation filter based only on the acquired images,
with the objective of obtaining an adapted system for detail
extraction from the PAN image, and 2) compare this approach
with techniques for detail extraction used in state-of-the-art
pansharpening methods and, in particular, with those designed
by some specific knowledge of the sensor MTF. To this end,
two different validation procedures are performed. The first one
aims at evidencing the capabilities of the estimation procedure
to properly approximate the actual response of the imaging
systems; the second one points out the advantages of extracting
details through the filters derived according to the proposed
procedure, instead of those employed in classical approaches.

The remaining sections of this paper are organized as fol-
lows. In Section II, the formulation of the estimation problem
and its solution are provided. In Section III, we will describe
the employed algorithm for spatially enhancing the MS image,
which is based on a well-known injection model, while in
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Section IV, the two validation procedures are fully described
and exploited to assess the performances of the proposed
method with respect to state-of-the-art methods. In the end, in
Section V, the conclusions and future developments are drawn.

C. Notation

We use bold lowercase to denote vectors (e.g., x, y) and
bold uppercase to denote matrices (e.g., H, M). XT indicates
the Hermitian transpose of X. A monochromatic image is
represented by lexicographically ordering its pixels, namely,
by stacking either their rows or their columns into a vector. In
particular, vector p ∈ R

r indicates the observed panchromatic
image composed of r pixels. Accordingly, MS images are orga-
nized as a matrix in which each row corresponds to a spectral
band. The observed MS image is thus denoted as M ∈ R

L×q ,
in which L is the number of bands and q < r is the number of
pixels in each MS channel. Note that, in this representation of
the data, each column is the spectrum of a given pixel.

II. FILTER ESTIMATION

In this section, we detail the mathematical formulation of
the general problem of the filter estimation. The objective is to
infer the relationship between the blurred and the sharp images,
which, in this context, are represented by the MS and the PAN
data, respectively.

We restrict the analysis of this work to the blurring process
through a linear shift-invariant system in the presence of addi-
tive noise that is described, for a given monochromatic (sharp)
image x, by the model

y = x ∗ h+ n (1)

in which y, h, and n are the observed degraded image, the
blurring filter, and the observation noise, respectively, and ∗
denotes the convolution operator. This equation can also be
expressed in matrix-vector notation by

y = Xh+ n (2)

where h, y, and n are the lexicographic ordering of h, y, and n
all belonging to R

q and X ∈ R
q×q is a matrix operator, which

is constructed by properly arranging the elements of x [27].
In the case of the 2-D cyclic convolution, which implicitly
assumes that x and h are periodic signals, X is a block
circulant with circulant blocks (BCCB) matrix. The latter can
be spectrally decomposed as X = FTΛF, where F is the 2-D
unitary (FT = F−1) discrete Fourier transform matrix, and
Λ =

√
q diag (Fx1), where diag(a) denotes a diagonal matrix

with diagonal a, x1 is the first column of X, and q > 0 is a con-
stant that depends on the size of the images. This decomposition
has two main advantages. First, by using fast Fourier transforms
(FFTs), computing matrix-vector multiplications with FT and
F can be done without explicitly constructing them; this implies
significant computational savings since the cost of the FFT
algorithm is O(N log2 N) for power-of-two length vectors,
where N is the length of the vector. Second, the diagonal matrix
Λ is easily invertible (assuming it is nonsingular), which is very
convenient, as it will be seen later. Furthermore, we restrict the
estimation of the blur vector h to a given nonempty convex set

H of Rq that is used to impose a finite support to h (namely, to
limit the number of nonzero values of h).

The simplest and most intuitive approach to apply the decon-
volution problem to pansharpening consists in searching for a
relation between each MS band and the PAN image. In other
words, the estimation problem is separated into L independent
parts, where L represents the number of the MS spectral bands.
The intrinsic suboptimal nature of this method, which will be
referred to as Filter Estimation with Multi Spectral optimization
(FE MS), entails the lack of correlation among the MS bands
leading to worse performances (as shown in Section IV). In
particular, this incoherence can cause the wrong estimation of
some filters, as it is the case, for example, of the blur filter
relative to the blue channel of the IKONOS sensor (see Fig. 4).
For this reason, other more sophisticated approaches have to
be devised to solve the problem. In the following, we discuss
in more detail our proposed method in light of the previous
considerations.

A different method, aimed at preserving the coherence
among details of the MS and PAN images, is the object of our
current proposal and hence will be simply denoted as Filter
Estimation (FE). Our approach assumes that the same spatial
degradation affects all bands. Accordingly, we estimate the blur
by applying (1) to the original PAN image and a low resolution
version of it. The low resolution version of the PAN is obtained
through a linear combination of the MS bands, as it is common
for the class of relative-spectral-contribution methods [10]. The
equivalent panchromatic image pe is thus written as a function
of the MS image upsampled to the PAN resolution, M̃, and of
a vector α containing the weighting coefficients. In order to
include a constant term accounting for the radiation collected
by the PAN sensor and not by the MS ones, we write pe

pe = M̃T
augα (3)

where M̃aug ≡ [M̃T ,1T ]T is obtained by stacking M̃ and a
row vector 1T composed by all ones. The choice of a linear
relationship between the MS bands and the PAN image, which
is implied by (3), allows for an efficient implementation of the
proposed algorithm, as detailed in the following. It constitutes a
widely employed model for pansharpening applications, which
led to state-of-the-art pansharpening algorithms [28], [29], and
is the basis of the most promising approaches based on the
Bayesian theory [11], [12], [17], [30].

More specifically, the filter estimation problem is formulated
as follows:

minimize
h,α

{
‖pe −PCh‖2 + λ‖h‖2+
+μ

(
‖Dvh‖2 + ‖Dhh‖2

)}
subject to hT1 = 1,h ∈ H. (4)

The first term is known as the data-fitting term, which
imposes that the blurred version of the panchromatic image
must be close to the equivalent panchromatic. Note that PC

is defined such that PCh represents the linear convolution in
matrix form between the panchromatic image p and the blur h,
as in (2). The second and third addends act as regularization
terms (in the sense of Tikhonov) aimed at dealing with the
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h = F−1

{
◦ F{p}∗ ◦ F{pe}
F{p}∗ ◦ F{p}+ λ+ μ (F{dh}∗ ◦ F{dh}+ F{dv}∗ ◦ F{dv})

◦
}

(7)

ill-posedness of the inverse problem [31]. These terms can be
also seen as a priori information under a Bayesian framework
[25]. Here, Dh, Dv ∈ R

q×q , which are BCCB matrices, stand
for the first-order finite difference operator in the horizontal
and vertical directions, respectively, and can also be interpreted
as the convolution between h and the derivative filters Dh ∈
R

q and Dv ∈ R
q . The constraints induce the normalization

of the blur (i.e., hT1 = 1) and its finite support (i.e., h ∈
H), respectively. The selection of the squared �2 norm ‖ · ‖2
allows for a closed-form solution, which can be computed
efficiently in the frequency domain. The same choice proves
favorable also in the regularization terms, matching some de-
sirable physical conditions. Specifically, its use in the second
addend forces the obtained solution to have limited energy. This
makes sense since the blur degrading effect is usually con-
fined to a small region. Analogously, when acting on the filter
finite differences, it assures smooth transitions among the filter
values. This is desirable since blurs experienced in the practice
tend to be smooth and have Gaussian-like shapes. The two
regularization terms are properly weighted by coefficients λ and
μ, which can be used as input parameters to the algorithm.

The solution of the optimization problem follows an al-
ternated minimization with a projection scheme, where each
variable is minimized separately. First, the coefficients α are es-
timated, and subsequently, the blur is optimized; this sequence
is repeated for every iteration. The optimization (4) is strictly
convex. Therefore, its solution is unique and does not depend
on the initialization. For faster convergence, we initialize the
blur with a reasonable guess. We start from the Starck and
Murtagh (S&M) low-pass filter [32], which is commonly used
in pansharpening within the “à trous” algorithm. This algorithm
implements a wavelet decomposition based on a B3 spline
scaling function that was observed to closely match the typical
MTF shape in the VNIR spectrum with a cutoff value of 0.185
[15]. Since, in our test cases, the resolution ratio between MS
and PAN is 4, the initial filter h0 is obtained as the cascade of
the first two steps of the dyadic wavelet decomposition, namely,
it is defined as the convolution of the filter with coefficients
[1 4 6 4 1] and its expanded version interlaced by zeros (i.e.,
[1 0 4 0 6 0 4 0 1]) [22]. After optimizing with respect to α and
with respect to h, the estimated filter is normalized after each
iteration, and values outside a given window (typically being
very close to zero) are set to zero.

We remark that, because the optimization problem is convex,
the objective function is quadratic, and the constraints are easy
to deal with, we could use an algorithm to compute the exact
solution. In an array of experiments, we concluded, however,
that the proposed suboptimal scheme yields, from the practical
point of view, solutions comparable with the exact ones with far
lower computational complexity than that of the exact solvers.

This allows us to find an approximate solution to the opti-
mization problem in a simple way. For each iteration, the first

step consists in computing α, given the current value of h. This
corresponds to finding the solution of a simple least squares
problem

M̃augM̃
T
augα = M̃augPCh. (5)

In the second step, the computation of h given α involves
the solution of the optimization problem described by (4) with
respect to h. Being the cost function quadratic, it has a global
minimum achieved when[

PT
CPC + λI+ μDT

v Dv + μDT
hDh)

]
h = PH

Cpe. (6)

As seen before, the BCCB matrices PC , Dh, and Dv are di-
agonalized by the 2-D discrete fourier transform (DFT) matrix,
F{·}. This accelerates the computation of this solution as can
be seen in (7) shown at the top of the page, where F−1{·}
denotes the inverse Fourier transform, F{·}∗ is the complex
conjugate of the Fourier transform, ◦ is the componentwise
multiplication, and ◦ − ◦ is the componentwise division. This
equation involves a diagonal inversion, which has cost O(k),
but is dominated by the FFTs—with cost O(k log k); note that
F{p}, F{Dh}, and F{Dv} can be computed in advance. In
order to take advantage of the properties of the FFT, it is neces-
sary to work under periodic boundary conditions, as discussed
earlier. However, when dealing with real-world images, this
assumption is usually too strong since it is highly improbable
that an image’s external borders (unobserved) are repeated pe-
riodically. Processing these images as they are usually leads to
the development of undesirable artifacts, and in order to reduce
them, a preprocessing step is usually taken, namely, by blurring
the borders of the images. This allows the discontinuities to be
smoothed out [33].

The followed procedure can be summarized as in
Algorithm 1.
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The required stopping criterion can be imposed by consider-
ing the relative changes between the estimated variables or even
by imposing a fixed number of iterations.

III. PANSHARPENING METHOD BASED ON

FILTER ESTIMATION

One of the main issues for pansharpening algorithms is how
to properly inject into the MS the spatial details extracted
from the PAN in order to obtain the required spatial enhance-
ment. Many approaches have been proposed in the literature,
and a widespread classification distinguishes between local
and global approaches [34]. An example of the former is
the context-based-decision algorithm [20], which relies upon
the partitioning of the fusing images in blocks. The details
extracted by the PAN image are injected, if needed, after
an equalization phase based on the relationship between the
standard deviations calculated within the corresponding blocks
of the two images. Furthermore, detail injection is performed
only if the correlation between the low-pass version of the
PAN image and each of the expanded MS bands is greater
than a given threshold [20]. The injection schemes belonging
to the second class are based on global rules, as it is the case
of the simple additive injection model [22]. In this method,
a histogram matching procedure between the PAN image and
each MS band is advisable before fusing data from different
sensors. Again, we want to stress that the objective of this work
is the study of the extraction detail phase and the comparison
of several approaches under the same conditions. To reach this
scope, we selected a well-known injection model based on
the concept of modulation [often called high-pass modulation
(HPM)]. In [35], it is shown that the HPM scheme is related
to the local contrast of an image and, in general, outperforms
the high pass filter (HPF) approach. Moreover, some powerful
fusing procedures are also based on the HPM, as in [21].

More in detail, let us define Phm ∈ R
L×r as the PAN image

p after histogram matching with the L MS spectral bands Ml,
with l ∈ [1, . . . , L]. For the lth band, Phm

l is given by

Phm
l = [p−mp] ·

σMl

σp
+mMl

(8)

with mX and σX denoting the mean and standard deviation
of image X, respectively. The HPM injection model defines
the fused product M̂ ∈ R

L×r (in the lexicographic ordering)
according to the formula

M̂ = M̃ ◦
(
◦P

hm

Phm
LP

◦
)

(9)

with ◦ being the componentwise multiplication and ◦ − ◦ be-
ing the componentwise division. The Phm

LP ∈ R
L×r is the low

resolution version of Phm at the same scale of the MS image.
A widely employed procedure for properly generating Phm

LP

resorts to a multiresolution analysis (MRA) [36] implemented
through a pyramidal decomposition scheme. It consists in
repeated applications of an analysis operator, which has the
purpose of successively reducing the contained information.
This process is typically completed through the application of

a smoothing low-pass linear filter, which has to be matched
to the sensor MTF in order to obtain the best results [15],
[21]. This approach constitutes a perfect scenario for testing the
capabilities of the proposed filter estimation scheme since the
latter can be applied to estimate the required analysis filter. The
consequent proposed pansharpening procedure is summarized
as in Algorithm 2. As in [15] and [21], at each decomposition
step, the output of the smoothing filter is decimated by a factor
equal to the ratio R between the spatial resolution of the MS
and the PAN to get the size of M and finally upsampled by the
same factor R to reconvert the data to the PAN size, in order to
reduce the aliasing effects.

In the following section, some different types of blur filters h
will be used to generate Phm

LP from Phm, and they will be com-
pared along with the proposed method presented in Section II.

IV. EXPERIMENTAL RESULTS

In order to validate the proposed method and point out
its advantages with respect to filters conventionally used for
detail extraction in state-of-the-art pansharpening techniques,
an accurate experimental analysis has been performed by con-
sidering two data sets. The first one is an image acquired
by IKONOS, which senses in the visible and near infrared
spectrum range. The sensor acquires a multispectral image with
four bands [Blue, Green, Red, and near-infraRed (NIR)] and a
panchromatic channel. The resolution cell is 4 m × 4 m for the
multispectral bands and 1 m × 1 m for the panchromatic chan-
nel. The employed data set2 represents a mountainous and vege-
tated area of the China-Sichuan region and hence is here named
China data set. The second data set is acquired by QuickBird.
Analogously to IKONOS, QuickBird acquires almost simul-
taneously [37] a four-band multispectral image (Blue, Green,
Red, and NIR) and a panchromatic channel. The resolution cell
is 2.4 m × 2.4 m for the multispectral bands and 0.6 m × 0.6 m
for the panchromatic channel. The data set represents an urban
area of Indianapolis and is named, for this reason, Indianapolis
data set. The ratio between the spatial resolution of the PAN
and MS for both the data sets is 4.

All the algorithms considered for the comparison are based
on the HPM injection model presented in Section III. Thus, the
pansharpening algorithms differ only by the detail extraction

2Available at http://glcf.umiacs.umd.edu

http://glcf.umiacs.umd.edu
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phase, which is defined by the filter used to generate the equiv-
alent panchromatic with the same resolution of the MS image
[i.e., PLP in (9)]. More in detail, we analyze the following
options for the analysis filter: a 5 × 5 Box filter, which leads to
the smoothing filter-based intensity modulation (SFIM) method
[38]; the S&M filter described in Section III, which character-
izes the “à trous” wavelet transform (ATWT) method [22]; and
a Gaussian-shaped filter [20], [21], designed to match the sen-
sor MTF by exploiting the knowledge of the gain at the Nyquist
frequency [15]. Each method is referred to through an acronym,
which recalls the employed filter, namely, we identify the three
approaches as Box, S&M, and Gauß, respectively. For the sake
of comparison, the EXP method, which does not involve details
injection, is also included in the evaluation. In this case, only
the interpolation phase is performed to reach the same image
size of the PAN. The interpolation algorithm exploits the poly-
nomial kernel with 23 coefficients, as in [20]. The same method
is also used to generate the M̃S in (9) for all the algorithms.

Two validation strategies are considered.
1) The first one is performed by following Wald’s protocol.

A reduced scale MS image is generated by applying a
Gaussian MTF matched filter and a subsampling step to
the original MS image that is also used as a reference
for validating the fused products. The main objective of
this test is to show that the proposed method is able to
properly approximate the LPF used for degrading the
images in the simulation phase.

2) The other experiment is performed at full scale with no
degradation. In this case, no reference image is available,
and thus, the spectral quality of the fused image has to
be evaluated against the original MS image, while the
spatial quality is evaluated by comparing the details of
the final product with those of the original PAN image.
Moreover, in this case, a visual analysis is a mandatory
step to appreciate the quality of the pansharpened images.

A. Wald Protocol

In the literature, there are two well-known techniques to
validate pansharpening products. One of the most used (see
the pansharpening contest organized by the IEEE Data Fusion
Committee in 2006 [1]) is derived from Wald’s protocol and
aims at verifying the synthesis property [39]. In this case, re-
duced scale MS and PAN images are simulated; the two images
are then fused, and the pansharpened image is compared with
the original image, used then as a reference. A problem implied
by this validation procedure regards the quantification of the
similarity between the two MS images or, in another words,
the choice of the quality indexes to use in order to verify the
spectral and the spatial consistency of the fused product with
the given reference image. The literature is plenty of quality
indexes that, for the pansharpening applications, can be divided
into scalar and vector ones. The former can only evaluate
the radiometric distortions, while the latter are able to measure
the spectral distortions, too. The most used in this category
are the following: the spectral angle mapper (SAM) [40] (in
degrees) that evaluates the spectral distortion and the erreur
relative globale adimensionnelle de synthese (ERGAS) [41] that

TABLE I
MTF GAINS AT NYQUIST CUTOFF FREQUENCY

is a generalization of the root-mean-square error (RMSE) and
is able to measure both the spectral and radiometric distortions.
This feature is shared by the Q4 index [42], which represents a
vectorial extension of the Q index proposed in [43], relevant to
four band data sets.

The last question that arises in this protocol is related to
the procedure for simulating the low resolution MS and PAN
images. Proper low-pass spatial filters have to be applied to the
two images. Usually, in the case of the MS image, the filter is
matched with the MTF shape of the MS sensor, designed by
exploiting the hypothesis of Gaussian shape and the knowledge
of the gains at the Nyquist frequency of the MS sensor (see
Table I for values of sensors involved in this analysis) [15]. On
the other hand, an ideal filter is applied in this phase to the PAN
image [15].

Obviously, this procedure is very accurate, but the hypothesis
of invariance between scales, on which it is founded, is not al-
ways fulfilled in practice. Moreover, a strong bias is introduced
in the comparison among the algorithms since a specific known
filter is applied to degrade the initial images. In fact, in the detail
extraction stage of a pansharpening algorithm, the best way to
extract details should be obtained matching the filter used to
simulate the products for the validation.

In this validation scenario, the experiments are initially
pointed at evaluating the role of the parameters characterizing
the proposed filter estimation method. The first analysis is car-
ried out by varying the λ and μ coefficients, fixing the support
dimensions to a value equal to the double of the supposed real
support size (i.e., 12 pixels, which can be a reasonable size for
the filter support, as detailed afterward). A large range of values
is analyzed in the absence of noise, i.e., by employing the model
described by (1) for n = 0. The performances are evaluated
by using the error in angle, which is measured by the SAM
(in degrees), between the filter used in the simulation phase
and the one estimated by Algorithm 1, with both converted
in vectors by lexicographic ordering. The results are shown in
Fig. 1(a) and (b). From experiments, it can be stated that the
proposed method shows no particular sensitivity with respect
to the regularization coefficients for a wide range of values.

Subsequently, an analysis for evaluating the robustness of
the technique to different filter support sizes is performed. A
reasonable choice for the support dimension is considered to
be at least 3 ·R, assuming a blur with Gaussian shape (i.e., for
R = 4, the support size is at least equal to 3 ·R = 12). The per-
formances obtained for different sizes of the filter support are
computed by fixing μ = λ = 0 and μ = λ = 105. The results,
reported in Fig. 1(c), show that this rule of thumb for setting the
size of the support is reasonable. By investigating more in detail
the obtained results, we can state that errors in angle are com-
parable, but when the support is large, the robustness increases
for larger values of the parameters. For this reason and for the
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Fig. 1. Error in angle over (a) λ and (b) μ variations (with support size equal to 25) and (c) support size, using the model in (1) without additional noise.

Fig. 2. Error in angle over (a) λ and (b) μ variations (with support size equal to 25) and (c) support size, using the model in (1) with Gaussian noise. The SNR
is equal to 45 dB.

greater robustness to noise of this configuration, we choose the
latter setting. This characteristic is particularly useful in real
scenarios, in which the signal-to-noise ratio (SNR) is typically
lower than that in a simulated case. As a further support to
this choice, we show in Fig. 2 the curves of the angle error
versus λ and μ coefficients and support dimensions obtained
by using independent and identically distributed (i.i.d.) white
Gaussian noise in the degradation model described by (1). We
set the SNR value to 45 dB that is well suited for simulating
real scene acquisitions by MS sensors. The effectiveness of
employing higher values for the regularization coefficients to
face the additional noise contribution is evident from the results.

Regarding the stopping criterion, a fixed number of iterations
is chosen. The estimation in (5) is not very sensitive to the
variation of the degradation filter applied to the PAN image,
leading to a fast convergence of the proposed iterative approach
for the filter estimation. A couple of iterations are usually
enough to guarantee the convergence. The maximum number of
iterations is set to 10 in order to ensure the stop of the algorithm.

Another interesting analysis is carried out by varying the LPF
needed by the interpolation procedure that yields the upsampled
version M̃ of the MS image. In fact, the estimation problem in
(5) takes into account both the degradation introduced by the
MS sensor and the one created by the nonideality of the LPF
used in the upsampling step. In Fig. 3, we can see the different
blurs estimated by the algorithm with different interpolation
methods. It is worth noticing that, when the bicubic interpolator
(i.e., the farthest one from ideal) is used, the estimated degra-
dation is more severe than the one achieved when the half-band
polynomial with 23 coefficients (i.e., closer to the ideal filter)

Fig. 3. Blur functions estimated through the proposed method when M̃
is obtained with (a) the bicubic interpolator or (b) the polynomial with
23-coefficient interpolation.

TABLE II
PERFORMANCE EVALUATION FOR THE Gauß, FE MS, and FE METHODS

WHEN M̃ IS OBTAINED BY THE BICUBIC INTERPOLATOR (ON THE LEFT)
AND BY THE POLYNOMIAL CONVOLUTION KERNEL WITH

23 COEFFICIENTS (ON THE RIGHT)
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Fig. 4. From the top to the bottom: (a–d) Expected blurs. (e–h) Estimated blurs by the FE MS method. (i–l) Estimated blurs by the FE approach. The columns
are ordered by wavelengths (i.e., Blue, Green, Red, and NIR).

is exploited. This confirms that the filter estimation algorithm
also compensates the blurring due to the nonideality of the
upsampling filter. The quality indexes reported in Table II show
that the proposed approach (FE) overcomes the method based
on the same filter used for simulating the degraded images
(which supposedly should obtain the best performances) when
the interpolation is far from ideal. On the contrary, by using an
almost ideal LPF in the upsampling phase, the filter estimation
procedure tends to approximate the system applied during the
simulation, as confirmed by the very similar values achieved by
MTF and FE methods. Furthermore, the results evidence that
the band by band estimation procedure (FE MS) is not able to
produce a good approximation of the degradation filters and,
consequently, high-quality fused images.

A visual comparison between the actual MTF-based blurs
and the estimated ones is shown in Fig. 4. The first row reports
the ideal shapes of the degradation filters, and the second con-
tains the results obtained by applying the estimation procedure
band by band (FE MS). Finally, the third row reports the filter
achieved by examining the relation between the PAN image and
its equivalent low-pass version, which constitutes the proposed
method of this paper (FE). The FE MS method yields a different
filter for each band. This is the simplest and more intuitive
choice, but it obtains poor results due to the incoherence
between a MS band and the PAN image (in particular, the Blue
and Green bands) [10]. In fact, the coherence between a MS
channel and the PAN image increases with the contribution
that the band gives to the PAN image (see the relative spectral
responses for the IKONOS sensor depicted in Fig. 5); a better

Fig. 5. IKONOS sensor: Relative spectral responses.

estimation of the degradation filter can be achieved for the NIR
and Red channel or by resorting to the FE approach. The results
obtained by the FE MS, the FE, and the Gauß methods are
shown on the left in Table II and refer to the final products
reported in Fig. 6. The advantages of the FE method with
respect to the FE MS approach are evident in terms of all the
performance indexes. Furthermore, it can be underlined that
the proposed method constitutes a good approximation of the
optimal Gauß approach. A further remark concerns the blur
function estimated through the FE method, which is larger than
the actual one. This effect is mainly related to the nonideality
of the interpolation filter, which is implicitly addressed by
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Fig. 6. (a) MS full resolution (4 m) image (used as reference image). (b) EXP.
(c) Gauß. (d) FE methods.

TABLE III
PERFORMANCE EVALUATION FOR THE EXP, Box, S&M, AND

Gauß METHODS, WHEN M̃ IS OBTAINED WITH THE

23-COEFFICIENT INTERPOLATOR

TABLE IV
EXECUTION TIMES FOR THE COMPARED

METHODS ON THE China Data Set

TABLE V
DATA SIMULATED THROUGH ANISOTROPIC DEGRADATION FILTER:

PERFORMANCE EVALUATION FOR THE Gauß, FE MS, AND FE METHODS,
EMPLOYING THE 23-COEFFICIENT INTERPOLATOR FOR ACHIEVING M̃

the proposed estimation procedure, as it has been previously
shown. Indeed, also the frequency response of the 23-tap cubic
polynomial filter is significantly different from that of the ideal
LPF [20]. Moreover, we have also checked that the estimated
blur is even wider if rougher interpolation filters are employed.

The comparison with other very popular detail extraction
filters is reported in Table III. Naturally, the best results are
obtained by the MTF approach (since exactly the same filters

Fig. 7. (a) Gaussian-shaped impulse response of the degradation filter used
for the simulation of the Red channels and (b) the corresponding estimated
blur functions; the related sections in the cross- and along-track directions are
reported in (c) and (d), respectively.

Fig. 8. Results in terms of SAM and SCC indexes of the proposed method
obtained by varying the support sizes.

TABLE VI
FULL-SCALE PERFORMANCE EVALUATION USING SAM AND

SCC INDEXES FOR EXP, Box, Gauß, AND FE METHODS

used for the artificial degradation of the data set are used
for extracting the details). Indeed, the performances of the
Gaussian approaches are slightly better than wavelet-based
ones, and in general, they are preferred in the detail extraction
phase, due to a greater robustness to the aliasing effects [44].
Poorer performances are instead shown by the Box method,
which is based on the Box filter. They are caused by the shape
of its frequency response that does not perfectly match the
MTF of the MS sensor and is characterized by considerable
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Fig. 9. From the top to the bottom: (a–d) Expected blurs and (e–h) estimated blurs by the FE approach. The columns are ordered by wavelengths (i.e., Blue,
Green, Red, and NIR).

ripples in the obscure band; In Table IV, the execution times
are shown with reference to the China data set, using an image
with dimensions equal to 300 × 300 and an AMD Athlon
1.6-GHz processor. The interpolation phase with the half-band
polynomial with 23-coefficient interpolator requires 0.3 s. The
fastest approach is Box followed by Gauß, FE that takes more
time due to the filter estimation step, and S&M. However, all
the approaches obtain good results in terms of this index, also
owing to the chosen simple but efficient injection rule.

Finally, in order to further highlight the capabilities of the
proposed technique, we perform a test based on simulated data
obtained through an anisotropic degradation filter. Indeed, real
images hardly show isotropic blurs since the motion of the
platform induces a more severe degradation in the along-track
direction (see Section I-A). Thus, the simulation is conducted
by using an MTF-matched filter to degrade the MS image, but
in this case, a stronger attenuation in one direction is imposed.
Again, remarkable performances are shown by the proposed
approach, as evidenced by the overall results presented in
Table V and by the comparison of the actual and estimated blurs
illustrated by Fig. 7 with reference to the Red channel. Even
in this case, the estimated blur has a wider support because
of the previously described reasons. Nevertheless, the shapes
of the two blurs are comparable, and remarkably, an apprecia-
ble match between the actual and the estimated anisotropy is
achieved, as demonstrated in Fig. 7(c) and (d).

B. Full-Scale Validation

The second test case is carried out at full scale by em-
ploying the Indianapolis data set. The most straightforward
consequence of the reference image unavailability concerns
the numerical assessment of the fused product quality. Thus,
visual inspection constitutes the key step to understand the
effectiveness of a pansharpening algorithm. Nevertheless, as
further information, we quantify the performances of the con-
sidered approaches through the spectral angle mapper (SAM)

[40] between the MS image and the fused product and the
spatial correlation coefficient (SCC) [45] between the details of
the PAN image and the ones of the fused product. The former is
a measure of the spectral distortion with respect to the original
MS product, but its value has to be considered cum grano
salis. Indeed, since the details are characterized by particular
spectral features, a small SAM could eventually indicate a
limited quantity of injected information [10]. Accordingly, the
SAM has to be analyzed in conjunction with the SCC index
that, on the other side, quantifies the amount of spatial details. It
is worth to underline that other approaches are often employed
in the literature to evaluate the fused products at full scale (e.g.,
the Quality with No Reference index [46]), but the applicability
to MRA approaches could be compromised by the presence of
severe aliasing effects [47], as it is the case of QuickBird data.

Fig. 8 shows the performances of the proposed method,
achieved by varying the support dimension and fixing μ = λ =
105. A good balance between spectral consistency and spatial
enhancement is provided by a support dimension equal to 13. In
Table VI, the results of the Gauß and FE algorithms are shown
together with a comparison with state-of-the-art pansharpening
algorithms based on different detail extraction procedures. The
proposed approach obtains the best SCC, which indicates a
remarkable detail extraction capability, and a reasonable SAM
value that evidences a good spectral consistency.

Fig. 9 shows for every band the comparison between the
blurs hypothesized by the Gauß method and those estimated
by the proposed technique. Furthermore, Fig. 10 shows a
more detailed comparison between the blur used by the Gauß
method and that derived by the proposed estimation procedure,
with reference to the Red channel. The along- and cross-track
sections are reported, thus allowing to verify the expected
anisotropic shape, which is particularly evident by analyzing
Fig. 10(c) and (d).

Fig. 11 depicts the Red Green Blue (RGB) representation
of the fused results achieved by the Gauß and FE, while
Fig. 12 reports the differences (in absolute value) between the
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Fig. 10. (a) Gauß-based and (b) estimated blur functions for the Red channel
and the relative sections in the cross- and along-track directions in (c) and (d),
respectively.

Fig. 11. Full-scale fused results: (a) EXP, (b) PAN, (c) Gauß, and (d) FE
images.

details extracted by the two methods over the bands. They are
particularly evident on the edges of small structures (such as
paths and cars) and on the larger ones (such as buildings).
The main differences can be highlighted by focusing on the
blue band, while the results are closer for the NIR channel.
This similarity is mainly due the fact that the NIR band is the
one that most significantly contributes to the generation of the
equivalent PAN image used for estimation.

To help a visual inspection, a small area of the Indianapolis
data set is shown in Fig. 13. Since the same injection model is
adopted, only the details for both the algorithms are reported.
An unique image is presented for the proposed method, while

Fig. 12. Differences in absolute value between the details achieved by the
FE and Gauß methods over the bands, ordered by wavelengths (i.e., B, G, R,
and NIR).

Fig. 13. Small area in the Indianapolis data set. (a) MS image. (b) PAN
image. (c) RGB fusion result using the FE approach. Details extracted as
(p/pLP ) using (d) FE and (e–h) Gauß (different details for every spectral
band) approaches.

four images, one for each band, are shown for the Gauß
approach. The greater evidence in the details of the proposed
method compared to the ones of the Gauß approach is clear, in
particular, for some zones such as the path and cars present in
the area under study.
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V. CONCLUSION AND FUTURE DEVELOPMENTS

In the last years, the relevance of pansharpening in data
fusion is constantly increasing. A pansharpening algorithm is
usually divided into two steps: The extraction of the details
from the PAN image and their subsequent injection into the MS
image. The first phase is often carried out by filters matching
the MTF of the MS sensor in order to maximize the amount
of useful details. Gaussian filters matched with the sensor MTF
represent the state of the art for this step. In this case, a prior
knowledge on the sensor characteristics is exploited to define
the filter. The unavailability (or the inaccuracy) of this informa-
tion results in a strong limitation of this approach. In addition,
with filters matching the MTF and an approximation of the
real (and unknown) MTF, the details extracted can be incorrect
due to this residual mismatch. To overcome this problem, in
this paper, we have proposed a procedure for estimating the
filter that models the blur between the MS and the PAN image
by only using the available images and no additional informa-
tion (e.g., the MTF as specified by the sensor manufacturer).
The proposed technique was compared to the state-of-the-art
pansharpening technique extracting the details through filters.
The experimental results were carried out by exploiting two
different validation procedures: at reduced scale and at full
image scale. The former validation underlined the capability of
the proposed method of correctly approximating the unknown
blur filter and its robustness with respect to the tuning of its free
parameters. The second protocol pointed out the advantages
of the proposed method with respect to the state-of-the-art
pansharpening techniques, both from a numerical and a visual
analysis.

The proposed approach estimates a unique filter for all the
MS bands. This could represent a limitation for older sensors as
QuickBird or, in future applications, for hyperspectral sensors
since they could be characterized by strongly band-dependent
MTFs because of a wider spectral range covered. In both cases,
a different detail extraction filter for each band is advisable.
Accordingly, forthcoming developments include the modifica-
tion of the image blur estimation algorithm in order to take into
account these diversities among spectral bands.
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