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Abstract—In this paper, we propose a new framework for
spectral-spatial classification of hyperspectral image data. The
proposed approach serves as an engine in the context of which
active learning algorithms can exploit both spatial and spectral
information simultaneously. An important contribution of our
paper is the fact that we exploit the marginal probability dis-
tribution which uses the whole information in the hyperspectral
data. We learn such distributions from both the spectral and
spatial information contained in the original hyperspectral data
using loopy belief propagation. The adopted probabilistic model
is a discriminative random field in which the association potential
is a multinomial logistic regression classifier and the interaction
potential is a Markov random field multilevel logistic prior. Our
experimental results with hyperspectral data sets collected using
the National Aeronautics and Space Administration’s Airborne
Visible Infrared Imaging Spectrometer and the Reflective Optics
System Imaging Spectrometer system indicate that the proposed
framework provides state-of-the-art performance when compared
to other similar developments.

Index Terms—Active learning (AL), discriminative random
fields (DRFs), hyperspectral image classification, loopy belief
propagation (LBP), Markov random fields (MRFs), spectral-
spatial analysis.

1. INTRODUCTION

EMOTELY sensed hyperspectral imaging instruments are

capable of collecting hundreds of images, corresponding
to different wavelength channels, for the same area on the
surface of the Earth [1]. The concept of hyperspectral imaging
was first introduced at National Aeronautics and Space Ad-
ministration (NASA)’s Jet Propulsion Laboratory [2], where
a system called Airborne Imaging Spectrometer was built to
demonstrate the concept. Today, NASA is continuously gath-
ering high-dimensional image data with instruments such as
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Jet Propulsion Laboratory’s Airborne Visible—Infrared Imaging
Spectrometer (AVIRIS) [3]. This advanced sensor for Earth
observation records the visible and near-infrared spectra of
the reflected light using more than 200 spectral bands, thus
producing a stack of images in which each pixel (vector) is
represented by a spectral signal that uniquely characterizes the
underlying objects.

The number and variety of processing tasks in hyperspectral
remote sensing are enormous [4]. One of the most popular
ones is classification, which consists in assigning a label to
each pixel in order to generate a thematic land-cover map
[5]. The problem of hyperspectral image classification has
been tackled in the past using several different approaches.
For instance, several machine learning and image processing
techniques have been applied to extract relevant information
from hyperspectral data during the last decade [6]. The high
dimensionality of hyperspectral data in the spectral domain
poses critical problems for supervised algorithms [6], [7]; most
notably, in order for supervised classifiers to perform properly,
there is a need for large training sets in order to avoid the well-
known Hughes effect [8], [9]. However, training samples are
limited, expensive, and quite difficult to obtain in real remote
sensing scenarios. Inspired by this motivation, active learning
(AL), which aims at finding the most informative training set,
has become an active research topic in recent years [10]-[17].

AL has been adopted in the remote sensing community as an
effective strategy to reduce the cost of acquiring large labeled
training sets. It is a method of online learning, where a learner
strategically selects new training examples that provide maxi-
mal information about the unlabeled data set, resulting in higher
classification accuracy for a given training set size as compared
to using randomly selected examples. In [18], a survey of AL
approaches was presented in the context of supervised remote
sensing classification problems. In the literature, most available
AL algorithms acquire new labels based on spectral information
alone, discarding the spatial information present in the original
data. For instance, in [10], an AL technique that efficiently
updates existing classifiers by using fewer labeled data points
than semisupervised methods is presented. That technique is
well suited for learning or adapting classifiers when there is a
substantial change in the spectral signatures between labeled
and unlabeled data. In [11], two AL algorithms for semiauto-
matic definition of training samples in remote sensing image
classification are presented and applied to a variety of remote
sensing data, including very high resolution and hyperspectral
images. In [12], an efficient AL algorithm with knowledge
transfer for hyperspectral data analysis is presented. In [13],
an unbiased AL heuristic that enforces diverse sampling is
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investigated. In [14], different batch-mode AL techniques for
the classification of remote sensing images with support vector
machines (SVMs) are discussed. In [15], anew AL technique is
proposed to identify the most uncertain samples whose labeling
and inclusion in the training set involve a high probability to im-
prove the classification results. In [16], a novel coregularization
framework for AL is proposed that explores the intrinsic multi-
view information embedded in the hyperspectral data by focus-
ing only on samples with high uncertainty. This approach builds
a so-called contention pool which is a small subset of the overall
unlabeled data pool, thus reducing computational complexity.
In [17], a novel batch-mode AL technique is proposed in which
the uncertainty of each unlabeled sample is measured by defin-
ing a criterion which not only considers the smallest distance
to the decision hyperplanes but also takes into account the
distances to other hyperplanes if the sample is within the margin
of their decision boundaries. Despite the fact that several of the
aforementioned AL algorithms mainly focus on analyzing spec-
tral properties, spatial information plays a very important role in
the classification of hyperspectral data as it has been shown in
previous work [6]. Thus, the combination of spectral and spatial
information for AL represents a novel and promising contribu-
tion yet to be explored in the hyperspectral imaging literature.

In this paper, we propose a new framework which exploits
spatial information in the context of hyperspectral image clas-
sification. The proposed framework, based on the marginal
probability distribution which is obtained from the whole infor-
mation in the hyperspectral data, serves as an engine in which
AL techniques can exploit both the spectral and the spatial
information in the data. Here, the posterior class probability
is modeled with a discriminative random field (DRF) [19] in
which the association potential is linked with a multinomial
logistic regression (MLR) classifier [20], [21], where the re-
gressors are inferred by the logistic regression via variable
splitting and augmented Lagrangian algorithm (LORSAL) [22],
and the interaction potential modeling the spatial information is
linked to a Markov random field (MRF) [23] multilevel logistic
(MLL) prior [24]. The training set is enlarged with new samples
obtained via an AL strategy based on the conditional marginals
of the unlabeled samples, which encode the spatial information
embedded in the DRF. The marginals are computed via the
loopy belief propagation (LBP) method [25], [26], which is
used in conjunction with labeled training samples in order to
infer the class distributions. The main innovative contributions
of this paper to the hyperspectral image classification literature
can be summarized as follows.

1) First of all, we present an LBP-based method to estimate
the conditional marginals for improved spectral-spatial
hyperspectral image classification.

2) Second, by taking advantage from the aforementioned
marginals, we apply AL algorithms in a more effective
way as they can exploit all the spectral and the spatial
information contained in the original hyperspectral data.

The remainder of this paper is organized as follows.
Section II formulates the considered problem and its maximum
a posteriori (MAP) solution. In Section III, we first estimate
the marginals using the LBP algorithm. Then, we present
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several AL approaches which use both the spectral and spatial-
contextual information. Section IV describes an experimental
evaluation of the proposed approach, conducted using real hy-
perspectral data sets respectively collected by AVIRIS (over the
Indian Pines region in Indiana) and by Reflective Optics System
Imaging Spectrometer (ROSIS) (over the city of Pavia, Italy).
Comparisons with state-of-the-art techniques for hyperspectral
image classification are also reported. Finally, Section V con-
cludes with some remarks and hints at plausible future research.

II. CONSIDERED PROBLEM

First of all, we define the notation that will be adopted
throughout this paper (Table I). Let K = {1,..., K} denote
a set of K class labels; let S = {1,...,n} denote a set of
integers indexing the n pixels of a hyperspectral image; let x =
(X1, ..,%,) € R? denote such hyperspectral image made up
of d-dimensional feature vectors; let y = (y1,...,y,) denote
an image of labels; let Dy, = {(y1,%1), ..., (yr,Xx1)} be a set
of labeled samples.

With these definitions in place, we can now build the pos-
terior density p(y|x) of the class labels y given the features
x, which is the engine for the class label inference. We follow
a discriminative approach. That is, we model the distribution
p(y|x) directly, instead of the joint distribution p(y, x), which
quite often implies simplistic assumptions about the data gen-
eration mechanism. Furthermore, because the discriminative
models are less complex than the corresponding generative
counterparts, learning the former models yields often better
results than learning the latter ones, namely, when the training
data are limited.

We adopt the following DRF model [19] for our posterior
density':

Y = 57 o (Zlog Pyl w)

€S
+ ) log p(yi,yj)> (1)

(i,j)eC

where Z(x,w) is the partition function and C is a set
of cliques.2 In the discriminative model (1), the term
log p(y:|x;,w), named the association potential, models the
likelihood of label y; given the feature vector x;, and the term
log p(y;|x;, w), named interaction potential, encodes spatial-
contextual information.

In the DRF model introduced in [19], the association and
interaction potentials are allowed to depend on the complete
image of features. Our DRF (1) has a simpler structure as the
association potential at pixel ¢ depends only on the feature
x; and the interaction potential does not depend at all on the
feature vectors. In spite of this simplification, our DRF model
is able to capture to a great extent the spectral and the spatial
information present in the hyperspectral data.

ITo keep the notation simple, we use p(-) to denote both continuous densities
and discrete distributions of random variables. The meaning should be clear
from the context.

2 A clique is a set of labels which are neighbors of each other.
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TABLE 1
LIST OF ABBREVIATIONS USED IN THIS PAPER

AIS Airborne imaging spectrometer
AVIRIS Airborne visible infra-red imaging spectrometer
ROSIS Reflective optics system imaging spectrometer
AL Active learning
DRF Discriminative random field
MLR Multinomial logistic regression
MRF Markov random field
MLL Multi-level logistic
MAP Maximum a posteriori
MPM Maximum a posteriori marginal
RBF Radial basis function
SVM Support vector machine
LBP Loopy belief propagation
LORSAL Logistic regression via splitting and augmented Lagrangian
LORSAL-MLL Spectral-spatial segmentation via LORSAL and MLL
LORSAL-AL LORSAL algorithm with active learning
LORSAL-AL-MLL Spectral-spatial segmentation via LORSAL-AL and MLL
MPM-LBP Maximizer of the posterior marginal by LBP
MPM-LBP-AL Maximizer of the posterior marginal by LBP with AL
RS Random selection
MI Mutual information
BT Breaking ties
MBT Modified breaking ties

A. MLR

In this paper, we model the probability p(y;|x;,w) with the
MLR

exp (w(k)Th(x,;))
Zle exp (w*"h(x;))

p(yi = klxi,w) = 2

where w = [w(l)T,...7w(K‘1)T]T. Since the density in (2)
does not depend on translations of the regressors w*), we take
W) = 0. h(x) = [h(x),...,h(x)]T is a vector of [ fixed
functions of the input, often termed features. In this paper, we
use a Gaussian radial basis function (RBF) kernel given by
K (x;,x;) = exp(—||x; — x;||?/20?), which is widely used in
hyperspectral image classification problems [27]. In order to
control the machine complexity and its generalization capacity,
we model w as a random vector with Laplacian density [21]

p(w) o< exp (=A[jwl1) 3)

where ) is the regularization parameter controlling the degree
of sparsity of w.

Based on the prior p(w) and on the DRF (1), we may de-
rive an expectation—-maximization algorithm to infer the MAP
estimate of p(w). This approach is heavy from the computa-
tional point of view, owing to the complexity associated to
the expectation step and to the computation of the partition
function Z(x,w) (see [19] and [28] for parameter learning in
DRFs). In order to mitigate the complexity associated to the
computation of the MAP estimate of @, we assume that the
interaction potential in (1) is constant, and thus, from (1), we
have p(y|x) = [ [, p(vi|®:), i.e., the random variables given x;,
fori =1,...,n, are treated as independent. We stress that this
assumption is taken only to infer the vector w. We are aware
that the inferred vector @ is suboptimal. However, as we show in
Section IV, this approximation is good enough to obtain state-
of-the-art results. Therefore, we estimate w by

@ = argmax {(w) + log p(w) 4)
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where /(w) is the log-likelihood function over the labeled
training samples given by

Zlogp

Optimization problem (4), although convex, is difficult to solve
because the term of /(w) is nonquadratic and the term log p(w)
is nonsmooth. The sparse MLR (SMLR) algorithm presented
in [21] solves this problem with O((d(K — 1))%) complexity,
which is frequently unbearable when dealing with kernels and
a large number of classes. The LORSAL algorithm introduced
in [22] and [29] opens a door to handle these by replacing
a difficult nonsmooth convex problem with a sequence of
quadratic plus diagonal /5 — [y problems, resulting in a prac-
tical complexity cost of O(d?(K — 1)). Compared with the
figure of O((d(K — 1))?) associated to the SMLR algorithm,
the complexity reduction is d(K — 1)2.

= klx;, w). ®)

B. MLL Spatial Prior

In this paper, we include spatial-contextual information in
the classification process by adopting an isotropic MLL prior
to model the image of class labels y. This prior, which belongs
to the MRF class, encourages piecewise smooth segmentations
and thus promotes solutions in which adjacent pixels are likely
to belong to the same class. The MLL prior is a generalization
of the Ising model [30] and has been widely used in image
segmentation problems [23]. It is given by the following
expression:

By S(yi—yy)
p(y) = Ee (ee (6)

where Z is a normalizing constant for the density, p is a
tunable parameter controlling the degree of smoothness, and
§(y) is the unit impulse function.’> Notice that the pairwise
interaction terms, 6(y; — y;), attach higher probability to equal
neighboring labels than the other way around. In this way, the
MLL prior promotes piecewise smooth segmentations, where
w controls the degree of smoothness.

C. MAP Labeling

The MAP estimate minimizes the Bayesian risk associated
to the zero—one loss function. Suppose that we are given the
estimates @ and /i of w and p, respectively, and we want to
compute the MAP estimate of y given by

)=1 Y Syi—y)g (D

y arg min E Ingyz‘Xu
yekn
(i,5)€C

€S

Minimization of (7) is a combinatorial optimization prob-
lem involving unary and pairwise interaction terms. A good
approximation can be obtained by mapping the problem into
the computation of a series of mint-cuts on suitable graphs [31].

3ie., 6(0) = land 6(y) = 0, fory # 0.
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Fig. 1.

This aspect has been thoroughly explored in the context of hy-
perspectral image classification in previous contributions [29].

III. PROPOSED APPROACH
A. MPM Labeling

An alternative to the MAP solution is the MAP marginal
(MPM) solution, which minimizes the Bayesian risk associated
to the sitewise zero-one loss function. As in the previous
section, suppose that we are given the estimates @ and [ of w
and p, respectively. The MPM estimate of label y; is given by

Ui = arg max q(yi|x), 1e€8 ®)
where ¢(y;|x) is the marginal density of p(y|x) with respect
to y;. The computation of the marginal density of p(y|x) given
by (1) is very difficult. In this paper, we use the LBP algorithm
to estimate the MPM solution. LBP is an efficient inference
approach to estimate Bayesian beliefs [25] in graphical models.
The main idea of LBP is to introduce messages between hidden
nodes in the MRF model as shown in Fig. 1, in which each
node 7 represents a random variable or a hidden node, in our
case, the class label y; associated with each input feature vector
x;. In the square lattice, ¥;;(yi,y;) = p(vi, y;) stands for the
interaction potential that penalizes every dissimilar pair of
neighboring labels, and ¢;(y;,x;) = p(y;|x;) represents the
association potential of label y; given evidence x;.

Fig. 2 provides a graphical interpretation in the form of a sim-
ple undirected network. At iteration ¢, the message sent from
node 7 to any of its neighboring nodes j € A/ (4) is given by

y] ZZUJ yz»yj (yuxz) H le(yz) ©)]

keN (i)\{5}

where Z is a normalization constant. As shown in Fig. 2, at
each iteration, each node sends messages to its neighbors, and
the belief is estimated at each node by using all of the incoming
messages. LBP is an iterative algorithm, where the propagation
process iterates until convergence. The full joint posterior
probability can be obtained from the product of marginals, or
individual marginals can be used in an inference problem. If
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Fig. 2. Graphical representation of the message passing in LBP at iteration ¢.

we assume that bf(y;) denotes the belief of node 1 at iteration ¢,
then bt (y;) is given by

bi(yi=k)=q(yi=k[x) = ¢(yi=k) [[ mh@wi=k). 10
JEN(3)

Finally, we can estimate the final solution by means of a so-
called maximizer of the posterior marginal for node ¢, which is
given by
1D

7; = arg max q(yilx) = arg max b (yi)-

Algorithm 1 presents the pseudocode for a supervised clas-
sification algorithm which takes advantage of the MLR, MLL,
and LBP concepts to produce an MPM solution. In the required
parameters of Algorithm 1, LBPiters denotes the number of it-
erations used in the LBP algorithm. In line 2 of Algorithm 1, the
MLR regressors are learnt using the LORSAL algorithm [22].
In line 3 of Algorithm 1, p; collects the MLR probabilities for
the whole image, as indicated in (2). In line 4 of Algorithm 1,
p2 collects the MLL priors as indicated in (6). Finally, in line 5
of Algorithm 1, the LBP algorithm is applied, which computes
the marginal inference for the whole image. In [26], evidence is
given that the LBP converges to a local stationary point of the
Bethe approximation to the free energy. In our experiments, we
empirically observed that LBP usually converges very fast, in
practice, within less than ten iterations.

Algorithm 1 Maximizer of the posterior marginal by LBP
(MPM-LBP)

Require: x, Dy, LBPiters, 1

1: @ = LORSAL(Dyr) (x LORSAL infers the sparse vectors
w for MLR, see problem (4)x)

2:p1 :=p1(x,®) (x Function p; collects the MLR
probabilities, see (2) *)

3: P2 := p2(u, neighborhood) (+ Function po collects the
MLL priors, see (6) *)

4:q := LBP(pPy, P2, LBPiters)  (x
marginals, see problem (10) x)

5.y = arg m}z}xa

LBP estimates the

B. AL

The basic idea of AL is that of iteratively enlarging the
training set by requesting an expert to label feature vectors from
a set of unlabeled feature vectors. A relevant question is, of
course, which samples should be chosen. This issue has been
widely studied in the remote sensing literature [10]-[17], [29].
Most available approaches for AL take full advantage from the
class posterior probabilities p(y;|x;). However, these methods
usually learn from classifiers which only consider the spectral
information, i.e., the given feature vector related with the class
label. This is mainly because it is difficult to encode the
spatial information in class posterior probability distributions.
Furthermore, the posterior marginals ¢(y;|x) are very difficult
to estimate. This is because computing the marginals of the joint
distribution (1) represents a complex problem, which is very
difficult to solve when the underlying graph contains cycles
(loops). As aresult, it is not easy to integrate spatial information
using probabilities. To address this issue, in this paper, we resort
to LBP to approximate such marginals. By taking advantage of
the MPM estimates discussed in Section III-A, our introspec-
tion is that spatial information can also play a very important
role in AL. In the following, we describe a new spectral—spatial
strategy with AL which is based on the posterior marginal
distributions ¢(y;|x) estimated by the LBP. With this strategy,
we can implicitly include spatial information into existing
AL approaches. The proposed spectral—spatial strategy will be
shown in this paper to introduce improvements with regard to
the most common case in which AL only considers the spectral
information contained in the input data.

Algorithm 2 presents the pseudocode for the MPM-LBP
algorithm with AL (MPM-LBP-AL hereinafter). Here, Dy, =
{(x1,91),...,(xL,,yr,)} denotes the initial labeled training
set, and L; is the number of samples in Dy,,. Similarly, Dy, =
{(x1,91),---,(xL,,yL,)} is the new labeled set, and L,, is the
number of new samples selected at each iteration during the
AL process. Let Dy ={(Xn+1,Y041);- -+, (Xp+U,Yn+U)}
denote the candidate set for the AL set. Therefore, Dy, is a
subset of Dy;. As shown by Algorithm 2, in line 2, the marginal
inferences are estimated by the MPM-LBP algorithm. In line 3,
AL is performed in order to label new samples based on the
posterior density p(y|x). Following our previous work [29], we
consider four different sampling schemes for the AL step:

1) random selection (RS), where the new samples are ran-
domly selected from the candidate set;

2) a mutual information (MI)-based criterion [32], [33],
which aims at finding the samples maximizing the MI
between the MLR regressors and the class labels;

3) abreaking ties (BT) algorithm [34], which aims at finding
the samples minimizing the distance between the first two
most probable classes;

4) amodified BT (MBT) scheme [29], which aims at finding
samples maximizing the probability of the large class for
each individual class.

It should be noted that, while there may be no diversity in
the selection of unlabeled samples using RS and MI, the use of
BT and MBT approaches includes diversity in the selection of
unlabeled samples based on parameter L,,, which controls the
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number of unlabeled samples included per iteration. As shown
in our work [29], these methods have been traditionally applied
using spectral information alone. In this paper, we will evaluate
these methods using both spectral and spatial information based
on the proposed framework. In line 4 of algorithm 2, the labeled
training set is augmented by adding the set of newly selected
labels. In line 5, the newly selected set of labels is removed
from the candidate set in order to avoid overlapping effects.

Algorithm 2 Maximizer of the posterior marginal by LBP
with AL (MPM-LBP-AL)

Require: x, Dy,,, Dy, Dy, BPiters, i, L,

1: repeat

2: q:= MPM-LBP(Dy, x, i, BPiters)

3 DLu = AL(ﬁ, DU)

4. Dp:=Dr+Dyg,

5: DU = DU — DLu

6: until some stopping criterion is met

To conclude this section, we emphasize that our proposed
approach should not be regarded as a combination of many
classifiers but as a fully unified algorithm with different steps,
which has been carefully proposed bearing in mind the prob-
abilistic nature of the techniques adopted, which use LBP to
include spatial information as an innovative contribution in this
paper. As a result, the proposed approach should be regarded as
a unified framework for spectral—spatial classification of hyper-
spectral data in which AL techniques exhibit new potential, as
they can exploit spatial information in conjunction with spectral
information. In this regard, all parts of the proposed framework
are considered equally important. In the following section,
we experimentally evaluate the proposed approach using real
hyperspectral data sets collected by different instruments.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method by real
hyperspectral data sets. In all of our experiments, we apply the
Gaussian RBF kernel to a normalized version of the considered
hyperspectral data set.* In our experiments, we fix the sparsity
parameter to A = 0.001 and the smoothness parameter to j =
2. A full discussion on the impact of these parameters on the
final results is already given in our previous work [29]. Here,
we concluded that, although the adopted parameter settings
might be suboptimal, they empirically lead to very good re-
sults. We should also emphasize that, in our previous work
[29], we observed that the use of cross-validation techniques
yielded only marginal gains in the classification accuracies.
Specifically, we have observed that the LORSAL algorithm
is robust with respect to parameter A\ and the LORSAL-MLL
algorithm is robust with respect to parameter . As a result, we
have decided to use fixed parameter settings in this paper in
order to concentrate more on the proposed framework and less

“The normalization is simply given by x; := xi/(\/ZHxi\P), for

i =1,...,n, where x; is a spectral vector.
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on its parameter tuning and also to illustrate that our proposed
approach is not very sensitive to such parameter settings. Fur-
thermore, we emphasize that, in this paper, we use first-order
neighborhood connectivity in all experiments as we empirically
found out that no significant gains in classification accuracy
could be used by adopting higher order neighborhood systems
which, in turn, require higher computational complexity.

Our main focus in experiments is to evaluate the proposed
spectral-spatial-based methodology for solving MPM infer-
ences in comparison with other approaches, such as those
implemented by the MLR-based LORSAL algorithm [22], or
the LORSAL-MLL [29], which implements the MAP strategy
in (7), under the same experimental setup. Simultaneously, we
also address the spectral-based method, such as LORSAL-AL
and LORSAL-AL-MLL [29], for comparison. Finally, we also
include other widely used classifiers in our comparison, such as
the SVM with and without spatial preprocessing using extended
morphological profiles (EMPs) and a spectral-spatial classifier
based on the morphological watershed transform.

Before describing our experiments, we first reiterate the no-
tations adopted. In the following, we assume that Dy, denotes
the initial labeled set, which is a subset of the available training
set and that L; denotes the number of samples (recall that L
denotes the total number of labeled samples). Let Dy be the re-
maining samples in the ground-truth image. In all experiments,
the initial set of labeled samples Dy, is obtained by RS from
the available ground-truth image, while the remaining samples
Dy are used for testing purposes. These samples also served as
the candidate pool for AL. Similarly, L, denotes the number of
newly selected labeled samples per iteration in the AL process,
and Dy, is a subset of Dy. It is important to emphasize that,
when Dy, is selected at each iteration, we remove it from Dy,
i.e., Dy = Dy — Dy,,. In practice, we assume that the initial
training samples for each class are uniformly distributed. It
should be finally noted that, in all cases, the reported figures
of overall accuracy (OA), average accuracy (AA), ~ statistic,
and class individual accuracies are obtained by averaging the
results obtained after conducting ten independent Monte Carlo
runs with respect to Dy,,.

The remainder of this section is organized as follows. In
Section IV-A, we introduce the data sets used for evaluation,
which comprise the AVIRIS Indian Pines and ROSIS Uni-
versity of Pavia data sets (two widely used benchmarks for
hyperspectral image classification). Section IV-B describes the
experiments with the AVIRIS Indian Pines data set. Finally,
Section I'V-C conducts experiments using the ROSIS University
of Pavia data set.

A. Hyperspectral Data Sets

Two hyperspectral data sets collected by two different instru-

ments are used in our experiments.

1) The first hyperspectral image used in experiments was
collected by the AVIRIS sensor over the Indian Pines
region in Northwestern Indiana in 1992. This scene, with
a size of 145 lines by 145 samples, was acquired over
a mixed agricultural/forest area, early in the growing
season. The scene comprises 220 spectral channels in the
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set used in experiments.

wavelength range from 0.4 to 2.5 pum, nominal spectral
resolution of 10 nm, moderate spatial resolution of 20 m
by pixel, and 16-b radiometric resolution. After an initial
screening, several spectral bands were removed from the
data set due to noise and water absorption phenomena,
leaving a total of 200 radiance channels to be used
in the experiments. For illustrative purposes, Fig. 3(a)
shows a false color composition of the AVIRIS Indian
Pines scene, while Fig. 3(b) shows the ground-truth map
available for the scene, displayed in the form of a class as-
signment for each labeled pixel, with 16 mutually exclu-
sive ground-truth classes, in total, 10 366 samples. These
data, including ground-truth information, are available
online,’ a fact which has made this scene a widely used
benchmark for testing the accuracy of hyperspectral data
classification algorithms. This scene constitutes a very
challenging classification problem due to the significant
presence of mixed pixels in all available classes and also

2)

5 Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec

because of the unbalanced number of available labeled
pixels per class.

The second hyperspectral data set was collected by
the ROSIS optical sensor over the urban area of the
University of Pavia, Italy. The flight was operated by
the Deutschen Zentrum for Luftund Raumfahrt (DLR, the
German Aerospace Agency) in the framework of the
HySens project, managed and sponsored by the European
Union. The image size in pixels is 610 x 340, with very
high spatial resolution of 1.3 m/pixel. The number of
data channels in the acquired image is 103 (with spectral
range from 0.43 to 0.86 pm). Fig. 4(a) shows a false color
composite of the image, while Fig. 4(b) shows nine refer-
ence classes of interest, which comprise urban features, as
well as soil and vegetation features. Out of the available
reference pixels, 3921 samples were used for training
[see Fig. 4(c)], and 42 776 samples were used for testing.
Some of the training samples in Fig. 4(c) are also included
in the ground-truth classes in Fig. 4(b); hence, the total
number of different labeled samples available for the
ROSIS University of Pavia scene is 43 923. These training
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TABLE 1II
OA, AA, INDIVIDUAL CLASS ACCURACIES (IN PERCENT), AND kK STATISTIC OBTAINED FOR DIFFERENT CLASSIFICATION METHODS WHEN
APPLIED TO THE AVIRIS INDIAN PINES HYPERSPECTRAL DATA SET BY USING 10% OF THE GROUND-TRUTH DATA AS TRAINING SAMPLES

Methods
Class Samples
SVM | LORSAL | LORSAL-MLL | MPM-LBP

Alfalfa 54 94.48 84.91 91.74 96.97
Corn-no till 1434 71.34 79.05 89.91 93.24
Corn-min till 834 68.00 69.43 87.55 90.68
Corn 234 85.23 86.38 97.82 99.59
Grass/pasture 497 73.19 94.02 95.74 96.66
Grass/tree 747 96.94 96.78 99.30 99.52
Grass/pasture-mowed 26 77.77 91.40 96.92 100
Hay-windrowed 489 85.89 99.04 99.38 99.52
Oats 20 73.74 96.00 100 100
Soybeans-no till 968 86.31 79.39 92.20 93.67
Soybeans-min till 2468 87.03 73.84 90.15 93.21
Soybeans-clean till 614 92.71 87.54 95.99 97.50
Wheat 212 94.27 99.20 99.40 99.40
Woods 1294 97.42 92.33 94.04 94.48
Bldg-grass-tree-drives 380 99.13 78.59 93.54 97.39
Stone-steel towers 95 90.29 93.11 98.56 98.84

OA 80.56 82.60 92.72 94.76

AA 77.81 87.56 95.14 96.92

K 85.86 80.14 91.66 93.99

and test sets are widely used in the hyperspectral image
classification community and provided by the University
of Pavia, who conducted the ground-truth data collection
and labeled sample generation for this particular scene.

B. Experiments With AVIRIS Indian Pines Data Set

In this set of experiments, we first evaluated the clas-
sification accuracy of the proposed MPM-LBP algorithm.
Table II shows the OA, AA, & statistic, and individual class
accuracies obtained using 1036 training samples, i.e., 10%
of each class in the ground-truth image shown in Fig. 4(b).
It is worth noting that, in this challenging classification sce-
nario, the MPM-LBP algorithm achieved better performance
than the other spectral-spatial algorithm, i.e., LORSAL-MLL
[29], considered for comparison here. Furthermore, the MPM-
LBP significantly improved algorithms considering the spectral
information alone, such as the SVM [6] and LORSAL [22].
Overall, the experiments suggest that the proposed MPM-LBP
is competitive with some of the best available spectral-spatial
methods for hyperspectral image classification.

In a second experiment, we evaluated the proposed MPM-
LBP-AL algorithm, which performs spectral-spatial-based AL,
and further compared it with other spectral-based AL strategies.
Fig. 5 plots the obtained OA classification results for four
different AL approaches: RS, MI, BT, and MBT, as functions
of the number of labeled training samples for the AVIRIS
Indian Pines scene. In all cases, we started with an initial
training set of 80 samples (only five per class), i.e., L; = 80
and L, = 10 (ten new samples were included at each itera-
tion). These algorithms are integrated in the learning strategies
considered in the previous section, i.e., LORSAL (resulting in
a strategy called LORSAL-AL) and LORSAL-MLL (resulting
in a strategy called LORSAL-AL-MLL). In those cases, the
AL methods only use spectral information. Finally, we also
integrated the AL approaches into the MPM-LBP, resulting in
a spectral-spatial AL strategy called MPL-LBP-AL.

Several conclusions can be obtained from Fig. 5. First and
foremost, the proposed MPM-LBP-AL algorithm clearly ob-
tained the best results in all cases. This is due to the fact
that the proposed approach takes advantage of both spatial and
spectral information, as opposed to the other tested approaches
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at each iteration, i.e., L,, = 10.
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Fig. 6. Classification maps obtained from AVIRIS Indian Pines data set (the training samples selected are superimposed as white dots in the classification maps)
with L; = 80 samples and a total number of 280 samples for (top) LORSAL-AL-MLL and (bottom) MPM-LBP-AL.

which use spectral information alone. For example, with 600
labeled samples, all tested sampling methods converged to OAs
higher than 99% when MPM-LBP-AL was used. However, for
the LORSAL-AL-MLL algorithm in which the sampling is
exclusively based on spectral information, the OAs converged
to around 91%. It is also worth noting that the performance of
the proposed MPM-LBP-AL depends on the number of labeled
training samples. When L is very small, the proposed MPM-
LBP-AL provides very similar results with regard to those ob-
tained by LORSAL-MLL. As L increases, for example, to L >
150, the MPM-LBP-AL substantially increases its classification
accuracy with regard to that of LORSAL-AL-MLL. Another

interesting observation from Fig. 5 is that RS in Fig. 5(a) did
not perform as effectively as the other tested approaches. This
was expected, since the other sampling methods actively search
for the most informative labeled samples. For a full discussion
on the behavior of these sampling methods, we refer interested
readers to [29].

In order to show the good performance of the proposed
spectral-spatial AL approach, Fig. 6 shows the obtained classi-
fication maps along with the training samples selected by each
AL method (superimposed as white dots on each classification
map). It is noticeable that the proposed spectral-spatial AL
strategy selected more samples in the difficult regions, such as
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1II

OA, AA, INDIVIDUAL CLASS ACCURACY (IN PERCENT), AND K STATISTIC OBTAINED FOR DIFFERENT

CLASSIFICATION METHODS WHEN APPLIED TO THE ROSIS PAVIA HYPERSPECTRAL DATA SET

Number of samples Methods
Class

Training Test LORSALT| LORSAL-MLL#| MPM-LBP” | SVM#| EMP/SVM! | Watershed®
Asphalt 548 6631 82.43 96.71 95.70 83.71 95.36 93.64
Bare soil 540 18649 69.08 72.36 73.27 92.25 63.72 97.35
Bitumen 392 2099 74.27 72.42 74.18 81.58 98.87 96.23
Bricks 524 3064 96.41 97.85 97.85 92.59 95.41 97.92
Gravel 265 1345 99.26 99.78 99.85 70.32 87.61 66.12
Meadows 532 5029 92.96 98.35 98.55 70.25 80.33 75.09
Metal sheets 375 1330 89.85 98.50 97.97 99.41 99.48 99.91
Shadows 514 3682 89.54 99.29 98.89 96.62 97.68 96.98
Trees 231 947 95.46 97.57 93.56 97.81 98.37 98.56

OA 80.11 85.57 85.78 80.99 85.22 85.42

AA 87.70 92.54 92.20 88.28 90.76 91.31

K 75.09 81.80 82.05 76.16 80.86 81.30

T LORSAL algorithm implements an MLR-based solution [22];
f LORSAL-MLL algorithm implements the MAP solution in (7) [29];

® MPM-LBP algorithm is the proposed spectral-spatial method;

# SVM results are taken from [6], which used EMPs for spectral-spatial characterization prior to SVM-based classification;

§ Watershed results are taken from [36], which used a spectral-spatial classifier based on a pixel-wise SVM classifier with

majority voting within the watershed regions to produce the final segmentation.

the upper leftmost quadrant of the image which is dominated
by highly mixed classes. The resulting classification maps are
smoother than the MAP solutions. For example, the MAP
solutions in the upper leftmost quadrant exhibit significant
confusion between classes.

C. Experiments With ROSIS University of Pavia Data Set

In this experiment, we conduct an evaluation of the pro-
posed MPM-LBP algorithm with regard to other state-of-the-art
hyperspectral image classification and segmentation methods.
Table III shows the OA, AA, k, and individual class accuracies
obtained in our algorithm comparison, which includes well-
known spectral-based classification methods such as the SVM
[6] and LORSAL [22]. Given the importance of considering
spatial information in the analysis of this particular scene,
we have also considered three spectral-spatial methods in
our comparison: an SVM-based classifier trained with EMPs
(designated in the table by EMP/SVM) [35], a segmentation
method based on the watershed transform [36], and LORSAL-
MLL [29]. The results reported in the table are respectively
taken from [35] and [36], where exactly the same training and
test sets were used to produce the results reported in Table III,
thus allowing a fair intercomparison of methods. As shown by
Table III, the proposed MPM-LBP provides results which are

comparable to those obtained by other spectral-spatial meth-
ods. From Table III, it can be observed that all spectral—spatial-
based algorithms (LORSAL-MLL, MPM-LBP, EPM/SVM,
and watershed) exhibit good performance, indicating the im-
portance of including spatial information in the analysis.

In a second experiment, we evaluated the proposed
spectral-spatial-based AL approach (MPM-LBP-AL). We use
all available samples [a total of 43923 samples obtained after
combining all the different labeled samples from the ground-
truth image in Fig. 4(b) and from the fixed training set in
Fig. 4(c)] as the candidate set for the AL process. We started
with an initial training set made up of 90 samples, i.e., L; =
90 and L, =10 (ten new samples were included at each
iteration). Again, LORSAL-AL and LORSAL-AL-MLL are
considered for comparative purposes. Fig. 7 shows the obtained
results as a function of the number of labeled training samples.
Several conclusions can be obtained from Fig. 7. First of all,
the proposed MPM-LBP-AL algorithm clearly obtained the
best results in all cases, which illustrates the advantage of
spectral-spatial-based AL. Furthermore, the proposed spectral-
spatial strategy is more robust for AL. For example, all MI,
BT, and MBT sampling approaches outperformed RS by the
proposed spectral-spatial strategy. However, the MI and MBT
approaches obtained slightly worse results when only spectral
information is considered for AL.
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Fig. 8. Classification maps obtained from ROSIS University of Pavia data set along with (superimposed as black dots in the classification maps) the training set
selected by each method with L; = 90 samples and a final number of 290 samples for (top) LORSAL-AL-MLL and (bottom) MPM-LBP-AL.
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Finally, Fig. 8 shows the classification maps (along with the
training sets selected by each AL method, this time superim-
posed as black dots in the respective maps). It can be seen
that the proposed spectral-spatial AL strategy outperforms the
spectral-based sampling approaches as the resulting classifica-
tion maps are smoother than the MAP solutions.

V. CONCLUSION AND FUTURE RESEARCH LINES

In this paper, we have proposed a new framework for
spectral-spatial hyperspectral classification using belief prop-
agation, in the context of which AL algorithms consider both
spatial and spectral information simultaneously. According to
our knowledge, this represents an innovative contribution in the
AL literature as previous methods have been mainly based on
the exploitation of spectral information alone. The parameters
of the complete model adopted by our strategy are inferred
via Bayesian inference using LBP tools. We highlight that the
proposed integrated algorithm has been shown to be very well
suited to problems with very few training samples available
a priori. In the two considered analysis scenarios (AVIRIS
Indian Pines and ROSIS University of Pavia data sets), the
proposed method exhibited state-of-the-art performance with
regard to other similar approaches. Although the results ob-
tained are very encouraging, further experiments with addi-
tional scenes and comparison methods should be conducted.
In the future, we will also develop computationally efficient
implementations of the proposed approaches by resorting to
parallel computer architectures such as commodity clusters or
graphical processing units.
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