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Semisupervised Hyperspectral Image Classification
Using Soft Sparse Multinomial Logistic Regression

Jun Li, José M. Bioucas-Dias, Member, IEEE, and Antonio Plaza, Senior Member, IEEE

Abstract—In this letter, we propose a new semisupervised learn-
ing (SSL) algorithm for remotely sensed hyperspectral image
classification. Our main contribution is the development of a new
soft sparse multinomial logistic regression model which exploits
both hard and soft labels. In our terminology, these labels respec-
tively correspond to labeled and unlabeled training samples. The
proposed algorithm represents an innovative contribution with
regard to conventional SSL algorithms that only assign hard labels
to unlabeled samples. The effectiveness of our proposed method
is evaluated via experiments with real hyperspectral images, in
which comparisons with conventional semisupervised self-learning
algorithms with hard labels are carried out. In such comparisons,
our method exhibits state-of-the-art performance.

Index Terms—Hyperspectral image classification, semisuper-
vised learning (SSL), soft labels, sparse multinomial logistic re-
gression (SMLR), unlabeled training samples.

I. INTRODUCTION

R EMOTELY sensed hyperspectral image classification is
an active area of research [1]. It takes advantage of

the detailed information contained in each pixel (vector) of
a hyperspectral image to generate thematic maps from de-
tailed spectral signatures. A relevant challenge for supervised
classification techniques (which assume prior knowledge in
the form of class labels for different spectral signatures) is
the limited availability of labeled training sets, since their
collection generally involves expensive ground campaigns [2].
While the collection of labeled samples is generally difficult,
expensive, and time consuming, unlabeled samples can be
generated in a much easier way. This observation has fostered
the idea of adopting semisupervised learning (SSL) techniques
in hyperspectral image classification. The main assumption of
such techniques is that the new (unlabeled) training samples [3]
can be obtained from a (limited) set of available labeled samples
without significant effort/cost [4].
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The area of SSL has experienced a significant evolution in
terms of the adopted models, which comprise complex gener-
ative models [5], self-learning models [6], multiview learning
models [7], transductive support vector machines (SVMs) [8],
and graph-based methods [9]. A survey of SSL algorithms is
available in [10]. Most SSL algorithms use some type of regu-
larization which encourages the fact that “similar” features are
associated to the same class. The effect of such regularization is
to push the boundaries between classes toward regions with low
data density, where the usual strategy adopted first associates
the vertices of a graph to the complete set of samples and then
builds the regularizer depending on the variables defined at the
vertices. This trend has been successfully adopted in several re-
mote sensing image classification studies [11]–[13]. In general
terms, these algorithms add hard labels to the set of unlabeled
samples and then use jointly the labeled and unlabeled sets to
improve the obtained classification results [11].

Although the aforementioned methods generally exhibit
good performance, difficulties may arise from the viewpoint of
the complexity of the model and its high computational cost.
Furthermore, when a hard label is inappropriately estimated
(which may often happen when limited training samples are
available), the learning process is mostly driven by unlabeled
samples. Most importantly, it is well known that hyperspectral
images are dominated by mixed pixels. In this case, assigning
a single (hard) label to a pixel as a whole may be a potential
source of errors if several spectral constituents participate in
the spectral signature associated to the pixel, as it is common
in practice [14]. This calls for new developments in the area of
SSL, able to exploit unlabeled information (e.g., by means of
soft labels) in a more effective way.

The use of soft classification labels has been very rarely
studied in the context of hyperspectral imaging. In [15], soft
labels are combined with harmonic energy minimization into an
external classifier based on the graph strategy. In [16], posterior
marginals are considered as soft labels leading to good classi-
fication performance. In [2], a novel fuzzy-input fuzzy-output
SVM classifier (F2SVM) was designed to address subpixel
classification problems. The proposed F2SVM algorithm uses
an input fuzzy membership function to model the subpixel
abundances of unknown patterns in the learning process.

In this letter, we develop a new soft sparse multinomial logis-
tic regression (SMLR) (S2MLR) model which belongs to the
family of self-learning algorithms. Compared with the original
model in which it is inspired [17], the S2MLR makes use of
both hard and soft labels. As opposed to other self-learning
methods which expand the training set by using unlabeled sam-
ples with hard labels only, the proposed SSL algorithm exploits
the concept of soft labels to generate unlabeled training sam-
ples using a recently proposed subspace-based MLR algorithm
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(MLRsub).1 This algorithm is specifically designed to address
the presence of highly mixed pixels in real hyperspectral images.
In addition, the MLRsub provides high confidence for the pos-
terior probability estimates for such pixels, which is also a highly
desirable feature for our proposed model. The remainder of this
letter is organized as follows. Section II introduces the S2MLR
model in mathematical terms and describes the proposed SSL
strategy. Section III evaluates the effectiveness of the proposed
method via experiments with real hyperspectral data sets. Quan-
titative comparisons with classic self-learning algorithms are
included for illustrative purposes. Section IV concludes with
some remarks and hints at plausible future research lines.

II. S2MLR MODEL

Let K ≡ {1, . . . , c} denote a set of c class labels; let S ≡
{1, . . . , n} be a set of integers indexing the n pixels of a
hyperspectral image; let x ≡ (x1, . . . ,xn) be a hyperspectral
image of d-dimensional feature vectors; let y ≡ (y1, . . . ,yn)

be the output, where yi = [y
(1)
i , . . . , y

(c)
i ]T denotes a “1-of-

c” encoding of the c classes,
∑c

k=1 y
(k)
i = 1, y

(k)
i ∈ {0, 1}

for hard labels, and y
(k)
i ∈ [0, 1] for soft labels; let the sets

{(yi,xi) : i = l1, . . . , ln} and {(yi,xi) : i = u1, . . . , un} re-
spectively denote the labeled and unlabeled training sets, where
ln and un are the numbers of labeled and unlabeled training
samples, respectively. In the following, we describe the classic
SMLR model and our proposed variation (S2MLR).

A. SMLR

The MLR [17] models the posterior class probabilities as
follows:

P
(
y
(k)
i = 1|xi,ω

)
≡

exp
(
ω(k)Th(xi)

)
∑K

k=1 exp
(
ω(k)Th(xi)

) (1)

where ω ≡ [ω(1)T , . . . ,ω(K−1)T ]T denotes the regressors and
h(xi) ≡ [h1(xi), . . . , hl(xi)]

T is a vector of l fixed func-
tions of the input, often termed features. In this letter, we
use the Gaussian radial basis function kernel: K(xi,xj) ≡
exp(−‖xi − xj‖2/2σ2), which is widely used in hyperspectral
image classification [19]. Following the SMLR algorithm intro-
duced in [20], we model ω as a random vector with Laplacian
density p(ω) ∝ exp(−λ‖ω‖1), where λ is the regularization
parameter controlling the degree of sparsity of ω. Under the
present setting, learning the class densities amounts to estimat-
ing the logistic regressors ω [13], [20], [21]. By adopting the
maximum a posteriori (MAP) estimation criterion, we have

ω̂MAP = argmax
ω

�l(ω) + log p(ω) (2)

where �l(ω) is the log-likelihood function on the labeled infor-
mation and

�l(ω)=

ln∑
i=l1

(
c∑

k=1

y
(k)
i ω(k)Th(xi)−log

c∑
k=1

exp
(
ω(k)Th(xi)

))
.

(3)
Notice that y(k)i denotes hard labels, i.e., y(k)i ∈ {0, 1}.

1More details about the MLRsub algorithm can be found in [18]. The
source code for this algorithm is available online: http://www.lx.it.pt/~jun/
MLRsub_demo.zip.

B. S2MLR

Since our approach is semisupervised, the classifier is learnt
from both the labeled and the unlabeled data. Based on the
supervised optimization problem in (2), we heuristically obtain
the semisupervised MAP estimation of ω by introducing the
unlabeled information

ω̂MAP = argmax
ω

�l(ω) + �u(ω) + log p(ω) (4)

where �u(ω) has the same structure of �l(ω) given by (3) and

�u(ω) =

un∑
i=u1

(
c∑

k=1

ŷ
(k)
i ω(k)Th(xi)

− log

c∑
k=1

exp
(
ω(k)Th(xi)

))
(5)

where, now, ŷ(k)i denotes the soft labels in contrast with the

hard labels. In this letter, the soft labels ŷ
(k)
i are heuristically

replaced by the probabilities given by the MLRsub algorithm
[18], i.e., ŷ

(k)
i ≡ E[y

(k)
i |xi, θ̂] = p(y

(k)
i = 1|xi, θ̂), where θ̂

is learnt from the MLRsub algorithm. As shown in [18], the
MLRsub is well suited to deal highly mixed analysis scenarios,
i.e., dominated by pixel vectors with materials appearing in
more than one class and very difficult to separate. The MLRsub
provides reliable probabilities that are ideal to be used as soft
labels in our problem. However, it should be noticed that any
other estimates can be adopted, as long as the soft labels are re-
liable. For instance, in [16], the posterior marginals are consid-
ered, whereas in [22], the fractional abundances obtained from
linear spectral unmixing are used, providing good performance.

As an SSL technique, the proposed approach generally deals
with a very low number of labeled samples. This leads to diffi-
cult classification problems regardless of whether a supervised
or an SSL technique is adopted. In the former case, poor gen-
eralization capability is expected. In the latter case, the tradeoff
between a large number of unlabeled samples versus a small
number of labeled samples could bias the learning process. This
is also an important concern since, in a self-learning algorithm,
the hard/soft labels are inferred from the labeled training set.
Therefore, in this letter, we use an iterative scheme to increment
the number of unlabeled samples. Let ut be the number of
new unlabeled samples included at each iteration. In general,
we take ut < ln. This setting provides a reasonable balance
between the labeled and unlabeled information. At the same
time, it has the advantage of iteratively refining the learning
process in case of poor generalization.

At this point, it should be noted that our adopted procedure
is iterative, i.e., we select a number of unlabeled samples which
are less than the total number of labeled samples at each
iteration, but after several iterations, we have more unlabeled
samples than labeled samples. In other words, in our approach,
we start with a very small number of labeled samples and then
grow the number of unlabeled samples until we end up with a
much larger number of unlabeled samples as compared to the
number of initial labeled samples, i.e., ln � un. However, un-
der the present setup, a relevant question is “which ut samples
should be chosen.” In this letter, we generate unlabeled training
samples based on a first-order neighborhood system, where the

http://www.lx.it.pt/~jun/MLRsub_demo.zip
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ut unlabeled samples are selected according to the following
criterion. Let us consider the first-order neighborhood system
of Dl+u, which denotes the set made up of both labeled and
unlabeled training samples. If both the MLR and the MLRsub
classifiers provide the same estimate ŷi for a given pixel xi,
then {ŷi,xi} is selected as a new unlabeled sample. Here, the
MLRsub classifier combines MLR with a subspace projection
method that better characterizes noise and mixed pixels [18].

We emphasize that the considered optimization problems
(2) and (4) can be solved by SMLR [20] and by fast SMLR
(FSMLR) [23]. Although the original SMLR algorithm gives
very good results, it is however limited to data sets with prod-
ucts (l + u)× c not larger than, for example, 1000, whereas
the FSMLR is unbearable when the number of training samples
increases. Therefore, most hyperspectral data sets are beyond
the reach of these algorithms, particularly in SSL which tries to
use a large amount of unlabeled training samples. This difficulty
has been recently addressed by the introduction of the logistic
regression via variable splitting and augmented Lagrangian
(LORSAL) algorithm [24], which is able to deal with training
sets with a few thousand training samples, regardless of the
number of classes. LORSAL plays a central role, for example,
in [13]. In this letter, following our previous work, we resort to
the LORSAL algorithm to estimate the regressors for the pro-
posed SSL algorithm. The computational complexity of the pro-
posed S2MLR using LORSAL algorithm is O(c(ln + un)

2). It
is also important to note that the computational complexity only
depends on the total number of labeled and unlabeled trainings;
there is no difference between using soft and using hard labels
for training purposes.

Algorithm 1 shows a pseudocode for the proposed S2MLR
algorithm. In lines 2–3 of Algorithm 1, soft labels are estimated
from the MLRsub algorithm. Here, τ controls the loss of
spectral information after projecting the data into a subspace.
Notice that θ̂ is also iteratively updated by taking advantage
of unlabeled training samples. Line 4 of Algorithm 1 estimates
the regressor using the LORSAL algorithm. In line 5, function
ψ(·) generates the unlabeled training set Dut

based on the
aforementioned criterion. In our experiments, we set τ = 0.95
and λ = 0.001. These are suboptimal settings; however, we
have empirically found that these parameters provide very good
performance [18].

Algorithm 1S2MLR
Require:Dl+u, x, λ, τ
1: repeat
2: θ̂ := MLRsub(Dl+u, τ)

3: ŷ :≡ E[y|x, θ̂]
4: ω̂ := LORSAL(Dl+u, ŷ, λ)

5: Dut
:= ψ(Dl+u,x, θ̂, ω̂)

6: Dl+u := Dl+u +Dut

7: until some stopping criterion is met

III. EXPERIMENTAL RESULTS

In order to evaluate the proposed SSL algorithm, we conduct
experiments with three widely used hyperspectral images col-

lected by the National Aeronautics and Space Administration’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [25]
and by the Reflective Optics System Imaging Spectrometer
(ROSIS) operated by the German Aerospace Agency (DLR).
In all cases, we illustrate the performance achieved by the
proposed algorithm with a conventional self-learning algo-
rithm [26] in which hard labels are given by the obtained
classification results based on the aforementioned sampling
criterion. This is reasonable for generating hard labels, since,
in hyperspectral images, it is very likely that two neighboring
pixels belong to the same class. In order to have a fair com-
parison, the same unlabeled feature vectors are used for the
proposed S2MLR algorithm along with soft labels estimated by
the MLRsub. In our experiments, the labeled training samples
are randomly selected from the available ground-truth data,
whereas the remaining samples are used for validation. In order
to increase the statistical significance of the results, each value
of overall accuracy (OA) and kappa statistic (κ) reported in this
letter is obtained as the average of ten Monte Carlo (MC) runs.

A. Experiment 1: AVIRIS Kennedy Space Center

In our first experiment, we use an AVIRIS hyperspectral data
set collected over the Kennedy Space Center,2 Florida, in March
1996. The portion of this scene used in our experiments has
dimensions of 292 × 383 pixels. After removing water absorp-
tion and noisy bands, 176 bands were used for the analysis. The
spatial resolution is 20 m by pixel. Twelve ground-truth classes
were available, where the number of pixels in the smallest class
is 105 and the number of pixels in the largest class is 761. In
order to show the good capacity of the proposed SSL algorithm
in dealing with ill-posed problems, a very limited number of 36
labeled samples (three per class) are used for training purposes.

Table I shows the classification results obtained for each
of the ten conducted MC runs. The table reveals that the
classification results are improved significantly by using un-
labeled samples with regard to the supervised case, in which
only labeled samples are used. Even in those cases with poor
generalization (e.g., see MC4), the proposed SSL algorithm still
significantly improves the obtained classification accuracies.
It is also noticeable that the average OA and κ obtained by
using soft labels are slightly better than the scores obtained
using hard labels. Although the improvements in classification
accuracy are not very significant, a detailed look into each MC
run reveals that the soft classifier always outperforms the hard
classifier (in our experiments, only MC2 was an exception to
this statement). This is because the use of soft labels allows the
proposed S2MLR model to tackle mixed pixels in conjunction
with labeled samples, thus better optimizing the estimation of
class boundaries and associating together all of the samples
sharing common properties in the same region while preserving
the relevance of labeled samples in the process. This allows
for a better balancing in the joint exploitation of labeled and
unlabeled samples during the classification process.

B. Experiment 2: AVIRIS Indian Pines

The well-known AVIRIS Indian Pines scene was used in our
second experiment. The data were collected over northwestern

2Available online: http://www.csr.utexas.edu/hyperspectral/data/KSC/.
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TABLE I
OA (IN PERCENT) AND κ (IN PERCENT) RESULTS FOR TEN MC RUNS AFTER PROCESSING THE AVIRIS KENNEDY SPACE CENTER HYPERSPECTRAL

IMAGE USING THE PROPOSED SSL WITH 36 LABELED (THREE PER CLASS) AND 1226 UNLABELED TRAINING SAMPLES. FOR ILLUSTRATIVE

PURPOSES, THE RESULTS OBTAINED FOR THE SUPERVISED CASE (USING ONLY LABELED SAMPLES) ARE ALSO DISPLAYED

Fig. 1. Classification maps obtained for the AVIRIS Indian Pines image using 160 labeled samples (ten per ground-truth class) and 849 unlabeled samples, along
with the obtained OAs.

Fig. 2. OA (in percent) classification results and standard deviations (after
ten MC runs) as functions of the number of unlabeled samples obtained for
the AVIRIS Indian Pines image, using the proposed SSL algorithm with 160
labeled samples (ten per ground-truth class).

Indiana in June of 1992 [1] and contain 145 × 145 pixels
and 220 spectral bands. A total of 20 bands were removed
prior to experiments due to noise and water absorption in those
channels. The ground-truth data [shown in Fig. 1(a)] contain 16
mutually exclusive classes [with the class legends in Fig. 1(b)]
and a total of 10 366 labeled pixels.3 This image is a classic
benchmark to validate the accuracy of hyperspectral image
analysis algorithms and constitutes a challenging problem due
to the significant presence of mixed pixels in all available
classes and also because of the unbalanced number of available
labeled pixels per class.

Fig. 2 reports the classification accuracies and standard de-
viations (after ten MC runs) obtained by the proposed SSL
approach as functions of the number of unlabeled samples. It
can be observed that very good results are obtained by using
both soft and hard labels, where the classification results always
increase as the number of unlabeled samples is increased (recall
that these samples can be obtained at no cost in our proposed

3Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec.

framework). For instance, with 160 labeled samples (and no
unlabeled samples), the supervised algorithm obtained an OA
of 62.72% and a κ of 58.23%. However, by including 849
unlabeled samples (which come at very low cost), the proposed
SSL algorithm increased the OA to 66.29% (with κ of 62.19%,
using soft labels) and to 65.10% (with κ of 60.89%, using hard
labels). Furthermore, the improvements obtained by using soft
labels with regard to using hard labels can also be appreciated in
Fig. 2, in which a significant improvement resulting from using
soft labels can be already appreciated around 200 unlabeled
samples. Such improvement becomes more relevant with an
increasing number of unlabeled samples. Fig. 2 also shows
that soft labels exhibit less standard deviation and produce
more robust results as compared to hard labels. For illustrative
purposes, Fig. 1(c)–(e) shows the classification maps obtained
(in one of the MC runs) by the supervised framework, the SSL
framework with hard labels, and the SSL framework with soft
labels.

C. Experiment 3: ROSIS University of Pavia

In our third experiment, we considered a hyperspectral image
acquired in 2001 by the ROSIS instrument over the city of
Pavia, Italy. The image scene, with a size of 610 × 340 pixels,
is centered at the University of Pavia. After removing 12 bands
due to noise and water absorption, it comprises 103 spec-
tral channels. Nine ground-truth classes, with a total of 3921
training samples and 42 776 test samples, were considered in
experiments. Table II shows the classification results obtained
by the proposed SSL algorithm in two different scenarios:
ln = 1800 and un = 400 and ln = 2700 and un = 600. In both
cases, the proposed SSL algorithm with soft labels provides
better results in terms of OA and κ when compared to the other
tested methods.

http://dynamo.ecn.purdue.edu/biehl/MultiSpec


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SEMISUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING S2MLR 5

TABLE II
OA (IN PERCENT) AND κ (IN PERCENT) CLASSIFICATION RESULTS

OBTAINED BY THE PROPOSED SSL ALGORITHM

FOR THE ROSIS DATA SET

IV. CONCLUSION AND FUTURE LINES

In this letter, we have developed a new S2MLR model
which uses both hard and soft labels as opposed to other SSL
algorithms which generally assign hard labels only when deriv-
ing unlabeled training samples. Our proposed strategy allows
us to better model the phenomenon of mixed pixels present
in hyperspectral images by the inclusion of soft labels. For
this purpose, we use the posterior probabilities obtained by a
recently proposed subspace-based multinomial logistic regres-
sion algorithm (MLRsub) as soft labels, mainly because these
probabilities exhibit high confidence in the estimates provided
for mixed pixels. The obtained classification accuracies for the
proposed method have been evaluated via experiments with
three different hyperspectral scenes, achieving state-of-the-art
performance with very limited training samples. In the future,
additional strategies for the generation of soft labels (e.g., ob-
taining the label estimates from the whole image) will be used
to fully substantiate our findings. We will also target additional
mechanisms for exploiting the unlabeled information, e.g., by
means of active learning. There has been some work in the
past concerning possibilistic k-nearest neighbors for land mine
detection with classifiers [27] and matching pursuits [28] that
has similarities to the proposed approach and may prove to be
a robust approach that could also be placed into a Bayesian
framework in future developments.
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