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ABSTRACT

Hyperspectral remote sensing images (HSIs) are characterized by
having a low spatial resolution and a high spectral resolution,
whereas multispectral images (MSIs) are characterized by low
spectral and high spatial resolutions. These complementary charac-
teristics have stimulated active research in the inference of images
with high spatial and spectral resolutions from HSI-MSI pairs.

In this paper, we formulate this data fusion problem as the min-
imization of a convex objective function containing two data-fitting
terms and an edge-preserving regularizer. The data-fitting terms are
quadratic and account for blur, different spatial resolutions, and addi-
tive noise; the regularizer, a form of vector Total Variation, promotes
aligned discontinuities across the reconstructed hyperspectral bands.

The optimization described above is rather hard, owing to its
non-diagonalizable linear operators, to the non-quadratic and non-
smooth nature of the regularizer, and to the very large size of the
image to be inferred. We tackle these difficulties by tailoring the
Split Augmented Lagrangian Shrinkage Algorithm (SALSA)—
an instance of the Alternating Direction Method of Multipliers
(ADMM)—to this optimization problem. By using a convenient
variable splitting and by exploiting the fact that HSIs generally “live”
in a low-dimensional subspace, we obtain an effective algorithm that
yields state-of-the-art results, as illustrated by experiments.

Index Terms— Hyperspectral imaging, superresolution, data
fusion, vector total variation (VTV), convex nonsmooth optimiza-
tion, Alternating Direction Method of Multipliers (ADMM).

1. INTRODUCTION

A spectral image, or data cube, is a set of 2D images, also termed
bands, representing the reflectance or radiance of a scene in different
parts of the electromagnetic spectrum. In the remote sensing field,
it is common to distinguish between hyperspectral and multispectral
images (HSIs and MSIs, respectively). The difference is application-
dependent, but HSIs typically have high spectral resolution in the
visible, near-infrared, and shortwave infrared spectral range [1]. As
a result of this high resolution, HSIs have a large number of two-
dimensional bands (i.e., images), each one corresponding to a narrow
band of the EM spectrum. On the other hand, MSIs generally offer a
higher spatial resolution, but each band covers a larger range of the
spectrum, resulting in a much smaller total number of them.
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It is of interest to fuse the information from these two data
sources, to obtain images with high spectral and spatial resolutions.
A related data fusion problem that has been extensively studied is
pansharpening, which is the fusion of multispectral and panchro-
matic images, the latter being single-band images usually covering
the visible and near-infrared spectral ranges [2].

Recently, some techniques dedicated to the fusion of HSIs and
MSIs have been proposed. A recent trend is to associate this problem
with the linear spectral unmixing one. Introduced in [3] for HSIs but
with older works exploring similar ideas for MSIs [4], this approach
consists in learning a dictionary from the HSI and then using it to re-
construct the MSI via sparse regression. The estimate of the original
high resolution HSI is then obtained from the regression coefficients
and from the dictionary. A similar approach was taken in [5, 6], in
which the dictionary-based representation was interpreted as a linear
mixing model. Alternatively, one can unmix both images, and try
to find a correspondence between them [7, 8]. In [9, 10, 11, 12], a
fully Bayesian approach was followed, by imposing prior distribu-
tions on the problem. A different but related problem was studied
in [13], where the HSIs were fused, not with several bands, but with
one panchromatic band.

The remainder of this work is organized as follows. Section 2
describes the data fusion method, including the proposed model and
the formulation of the optimization problem. It is followed by Sec-
tion 3, which presents some experimental results, and by Section 4,
which concludes this work.

2. DATA FUSION METHOD

2.1. Observation Model
For notational convenience, the representation followed in this work
will consider HSIs and MSIs to be two-dimensional matrices, where
each line corresponds to a spectral band, containing the lexicograph-
ically ordered pixels of that band. Let Yh ∈ RLh×nh denote the
observed hyperspectral data with Lh bands and spatial dimension
nh, Ym ∈ RLm×nm denote the observed multispectral data, which
have Lm < Lh bands and spatial dimension nm > nh, and Z ∈
RLh×nm denote the high spatial and spectral resolution data to be
estimated.

With these definitions in place, the hyperspectral measurements
are modeled as

Yh = ZBM+Nh, (1)

where B ∈ Rnm×nm is the matrix representation of the sensor
point spread function in the spatial resolution of Z, assumed to be
band-independent, with circular boundary conditions. Matrix M ∈
Rnm×nh accounts for a subsampling of the image Z. We assume



uniform subsampling defined on a subset of the spatial grid associ-
ated with the bands of Z. Therefore, the columns of M are a subset
of the columns of the identity matrix. Nh represents i.i.d. noise.

The multispectral measurements are modeled as

Ym = RZ+Nm, (2)

where R ∈ RLm×Lh holds in its rows the spectral responses of
the multispectral instrument, one per band, and Nm represents i.i.d.
noise.

Matrices B and R can be built by taking into account the reg-
istration between multispectral and hyperspectral images, and infor-
mation about the sensors provided by the manufacturer of the in-
struments. These matrices can, however, also be estimated from the
data, by formulating two coupled least squares problems. We don’t
provide details here due to lack of space, but the experimental results
presented in Section 3 use this form of estimation, instead of relying
on externally supplied information about the sensors.

2.2. Dimensionality reduction
Hyperspectral data are highly correlated: the spectral vectors, of size
Lh, normally “live” in a subspace of dimension much lower than
Lh [1]. Therefore, we can write

Z = EX, (3)

where E ∈ RLh×s is a matrix whose s columns span the same sub-
space as the columns of Z, and X ∈ Rs×nm are the representation
coefficients. Small values of s, i.e., s � Lh, translate into a de-
scription of the data in a relatively low-dimensional space. This rep-
resentation reduces the number of variables to be estimated, yielding
a much faster and more accurate estimation than if we worked in the
original space of Z.

Matrix E can be estimated in two different ways. One of them
consists in interpreting E as the unmixing matrix from a linear un-
mixing problem. We can estimate this matrix using, for example, the
Vertex Component Analysis algorithm (VCA) [14]. The other way
consists in building E from the left singular vectors of Yh that cor-
respond to the s largest singular values. If Nh = 0 and all discarded
singular values are zero, this representation spans the true signal sub-
space. If the former condition on Nh is not obeyed but Nh is i.i.d.,
the maximum likelihood estimate of the subspace is still given by
the first s singular vectors of Yh. However, if the noise is non-i.i.d.,
the estimation of the subspace is more complex. See, for example,
[15] for details, and for algorithms oriented to subspace estimation
in hyperspectral applications.

2.3. Regularization
The problem that we are trying to solve is strongly ill-posed, and
therefore needs adequate regularization. The regularizer that we use
is given by

ϕ(X)
def
=

nm∑
j=1

√√√√ s∑
i=1

{[
(XDh)ij

]2
+
[
(XDv)ij

]2} (4)

where (.)ij denotes the element in the ith row and jth column of a
matrix, and the products by matrices Dh and Dv compute the hor-
izontal and vertical discrete differences of an image, respectively,
with periodic boundary conditions. This regularizer is a form of vec-
tor Total Variation (VTV) [16]. Its purpose is to impose sparsity in
the absolute gradient distribution of an image, meaning that transi-
tions between adjacent pixels of an image should be smooth, except

for a small number of them, which should coincide with details such
as edges. This vector form of the regularizer promotes solutions in
which edges and other details are aligned among the different bands,
which is not the case for the non-vector form. This regularizer has
previously been used in a pansharpening application [17] and in the
denoising of hyperspectral images [18]. We apply it to the reduced-
dimensionality data X, and not to Z itself. One may raise the ques-
tion of whether it makes sense to apply the regularizer to X. This is
in fact so, since the subspace spanned by E is the same as the one
where Z resides (or an approximation), and by regularizing X we
are indirectly regularizing Z.

2.4. Optimization problem
Let ‖X‖F

def
=
√

Tr(XXT ) be the Frobenius norm of X. We can
now formulate an optimization problem based on our model with the
proposed regularizer:

minimize
X

1

2
‖Yh −EXBM‖2F +

λm
2
‖Ym −REX‖2F

+ λϕϕ(XDh,XDv).
(5)

The first two terms account for the data misfit and the last term is the
regularizer. The parameters λm and λϕ control the relative signifi-
cances of the various terms.

Problem (5) is convex, but is rather hard to solve, due to the na-
ture of the regularizer, which is non-quadratic and non-smooth. Ad-
ditional difficulties are raised by the large size of X (the variable to
be estimated) and by the presence of the downsampling operator M
in one of the quadratic terms, preventing a direct use of the Fourier
transform in optimizations involving this term. We deal with these
difficulties by using the Split Augmented Lagrangian Shrinkage Al-
gorithm (SALSA) [19], which is an instance of the Alternating Di-
rection Method of Multipliers (ADMM) optimization method. This
allows us to decouple the minimization of X into a series of much
simpler problems, by means of the variable splitting technique, in
which four auxiliary variables, V1 to V4, are used:

minimize
X

1

2
‖Yh −EV1M‖2F +

λm
2
‖Ym −REV2‖2F

+ λϕϕ(V3,V4)

subject to XB = V1,

X = V2,

XDh = V3,

XDv = V4.

(6)

SALSA is an algorithm which solves a complex optimization
problem through an iteration on a set of much simpler problems.
The constraints are taken into account by minimizing the augmented
Lagrangian of the problem. The minimization with respect to X is a
quadratic problem with a block cyclic system matrix, which can be
efficiently solved by using the Fast Fourier Transform (FFT) algo-
rithm. Minimizing with respect to the auxiliary variables is done by
solving three different problems whose solutions correspond to three
Moreau proximity operators [20]. The minimization with respect to
V1 is a quadratic problem which is efficiently solved via FFTs, and
the minimization relative to V2 is also quadratic; these two prob-
lems involve a matrix inverse which can be computed in advance.
Finally, the minimization with respect to V3 and V4 corresponds
to a pixel-wise vector soft-thresholding operation. In [19], condi-
tions for SALSA convergence were established, which are satisfied
in this case. Note that an alternative approach to solve this problem



(a) Observed HSI (false color,
crop).

(b) Observed panchromatic im-
age (crop).

(c) Proposed method’s result
(false color, crop).

(d) BT’s result (false color,
crop).

Fig. 1. Hyperspectral + panchromatic fusion on the Pavia dataset.
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Fig. 2. Relative Root-mean-square error (RMSE) between the esti-
mated image and the ground truth, for the different bands (for the
three best methods).

consists in employing a primal-dual method [21, 22]. Unlike our ap-
proach, these methods do not require the use of auxiliary variables.
However, SALSA has the flexibility of being able to deal with an
arbitrary number of terms in the optimization function and, since it
yields diagonalizable subproblems, it is much faster in problems of
this kind, according to our experience.

3. EXPERIMENTAL RESULTS

Since the pansharpening literature is, generally speaking, much more
established than the literature on the fusion of hyper- and multispec-
tral data, our method was first compared against a number of pub-
lished pansharpening methods in the fusion of a hyperspectral image
with a panchromatic one (the situation in which Lm = 1). Subse-
quently, it was compared with a published HSI-MSI fusion method.

Two datasets were used to test the different algorithms, one par-
tially synthetic and the other one using only real-life images. The
first dataset was based on a standard hyperspectral image (Pavia Uni-
versity, see Fig. 1). This image, acquired with the Reflective Optics
System Imaging Spectrometer (ROSIS) [23], was used to synthe-
size HSIs and MSIs according to (1) and (2), respectively, and was
also used as ground truth. To synthesize the lower spectral reso-
lution MSI images, the spectral response of the IKONOS satellite
was used. This satellite captures one panchromatic and four mul-
tispectral bands [23]. The panchromatic band’s response was used
for the tests made in Subsection 3.1 and the multispectral bands’ re-
sponse for those made in Subsection 3.2. For synthesizing the HSIs,
we performed blurring using the Stark-Murtagh filter [24] followed
by subsampling with factor 1/4 in both the horizontal and vertical
directions. The scattered light in hyperspectral applications is split

among many more bands than in multispectral applications, usually
yielding a lower SNR per band in the former case than in the latter
one. To account for this, we added Gaussian noise with an SNR of
30 dB to the HSI and with an SNR of 40 dB to the MSI.

The second dataset, taken above Paris and shown on Fig. 3a,
was acquired by two instruments on board the Earth Observing-1
Mission (EO-1) satellite: the Hyperion instrument, generating hy-
perspectral images at a spatial resolution of 30 meters, and the Ad-
vanced Land Imager (ALI), which provides both multispectral and
panchromatic images at resolutions of 30 and 10 meters, respec-
tively [25]. Since the MSI and the HSI have the same spatial resolu-
tion, we only fused the panchromatic image with the hyperspectral
one (see Section 3.1).

To quantitatively evaluate the quality of the results on the Pavia
dataset, for which a ground truth image was available, we used three
indices proposed in the literature: the Erreur Relative Globale Adi-
mensionnelle de Synthèse (ERGAS), proposed in [26], the Spectral
Angle Mapper (SAM), and an index based on the Universal Image
Quality Index (UIQI), proposed by Wang et al. [27] (the implementa-
tion used in this work considers a sliding window of 32×32 pixels).
When working on real-life images we had no access to the ground-
truth, and used an index proposed by Alparone et al. for these con-
ditions, the so-called Quality with No Reference (QNR) [28], which
is based on an evaluation of the spatial and spectral distortions of the
estimated image, Ds and Dλ, respectively.

In the implementation of our algorithm, we estimated matrix E
using VCA for both datasets. Estimating the subspace with trun-
cated SVD and keeping the ten singular vectors corresponding to
the ten largest singular values allows us preserve at least 99.95% of
the energy of the original image. Since the subspace estimated by
VCA shares the dimension of the subspace estimated by SVD [14],
we made s = 10. Note that, due to the random nature of VCA,
the results presented correspond to the average of ten runs of our
algorithm. To choose the values of the algorithm’s parameters, we
first found the optimal values for each situation, and computed the
corresponding quality indices. We then chose a set of parameter val-
ues that were the same for all situations but yielded quality indices
that were very close to the previously found optimal ones. These
parameter values were λm = 1 and λϕ = 10−2 when fusing a
HSI with a panchromatic image and λm = 1 and λϕ = 5 × 10−4

when fusing a HSI with a MSI. Additionally, we performed two pre-
processing steps on the hyperspectral data: first, uncalibrated or very
noisy bands were removed; afterward, the data were denoised by es-
timating a reduced rank subspace of Yh by means of an SVD with
s = 10, and then projecting the data onto this subspace.

In [29], a stopping criterion was proposed for problems solved



(a) Observed HSI (false color,
crop)

(b) Proposed method’s result
(false color, crop)

(c) GSA’s result (false color,
crop)

Fig. 3. Hyperspectral + panchromatic fusion on the Paris dataset.

via ADMM. We verified that this criterion worked well, always
yielding less than 200 iterations. Given this, we ran the algorithm
for the fixed number of 200 iterations in every case.

3.1. Fusion of hyperspectral and panchromatic images
A number of algorithms drawn from the pansharpening literature
were used for comparison with our method: the Gram-Schmidt
method (GS) and its adaptive version (GSA) [30], the Fast Intensity-
Hue-Saturation Fusion Technique (FIHS) [31], the Principal Com-
ponent Analysis method (PCA) [31], the Brovey Transform fu-
sion method (BT) [31], and the Box High-pass Filtering method
(HPF) [2]. The results for the Pavia dataset can be seen in Table 1
and Fig. 1. A comparative analysis of the errors along the different
bands is shown in Fig. 2. The results for the Paris dataset can be seen
on Table 2 and Fig. 3. We found that the published pansharpening
methods seem to not deal well with the fact that the panchromatic
image’s spectral range does not overlap with a large number of
hyperspectral channels.

3.2. Fusion of hyperspectral and multispectral images
For these tests we used the Pavia dataset, and compared to Zhang et
al.’s method (ZM) [10]. This method does not estimate the spatial
blur, so we estimated it in a manner similar to the way it is estimated
by our method. ZM assumes that the input HSIs and MSIs are repre-
sented with the same spatial resolution. Since this is not the case in
the problem we are addressing, we upsampled the HSIs to the reso-
lution of the MSIs for input to ZM. Following the authors’ lead, we
chose the decomposition level of the Nondecimated Wavelet Trans-
form to be three. Additionally, due to input restrictions of the imple-
mentation of ZM that was available, we only worked on a part of the
image (a section of the image with 200 × 200 pixels corresponding
to the bottom left corner). In an implementation of the algorithm de-
veloped with MATLAB R© 7.13, running on a desktop PC equipped
with an Intel R© Xeon R© CPU (at 3.20GHz) and 16 GB of RAM mem-
ory, the proposed method took approximately 35 seconds to perform
the fusion, on average. The results can be seen in Table 3.

4. CONCLUSIONS
We presented a flexible method to perform the fusion of hyperspec-
tral data with either panchromatic or multispectral images, in order
to obtain data with high resolution both in the spectral and in the
spatial domain. This fusion problem is closely related to the pan-
sharpening one, but presents new challenges: hyperspectral images
are much larger than the multispectral images normally used in pan-
sharpening, the different sources of data do not always spectrally
overlap, and when fusing with multispectral images, the high spatial
resolution data have several bands, instead of a single one.

The fusion problem was formulated as a convex optimization
one, and was solved via the Split Augmented Lagrangian Shrink-

Table 1. Pavia dataset: results for hyperspectral + panchromatic
fusion.

ERGAS SAM UIQI

Proposed 3.813 4.856 0.937
GS 4.960 5.494 0.885

GSA 4.587 5.116 0.893

FIHS 4.813 5.255 0.895

PCA 7.609 9.448 0.755

BT 4.533 4.550 0.919

HPF 5.573 6.151 0.866

Table 2. Paris dataset: results for hyperspectral + panchromatic fu-
sion.

Ds Dλ QNR

Proposed 0.024 0.108 0.871
GS 0.092 0.104 0.814

GSA 0.022 0.156 0.826

FIHS 0.125 0.136 0.756

PCA 0.105 0.089 0.816

BT 0.159 0.144 0.720

HPF 0.061 0.122 0.824

Table 3. Pavia dataset (bottom left corner): results for hyperspectral
+ multispectral fusion.

ERGAS SAM UIQI

Proposed 1.213 1.956 0.995
Zhang 5.919 4.375 0.881

age Algorithm (SALSA), an instance of the Alternating Direction
Method of Multipliers (ADMM). By using a convenient variable
splitting and by exploiting the fact that HSIs generally “live” in
a low-dimensional subspace, we obtained an effective algorithm
which compares quite favorably to several published methods, both
on simulated and on real-life datasets. In the fusion process, the
method can estimate both the relative spectral response and the
spatial response of the sensors from the data.
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