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Abstract

This work presents an iterative method for

solving systems of linear equations. The tech-

nique is very much in the spirit of group itera-

tive methods, allowing, however, lapped groups.

For a wide class of matrices, the group lapped

(GL) technique, herein introduced, improves

the convergence rate by a large factor, demand-

ing approximately the same number of opera-

tions per iteration as group iterative methods.

For systems in which any subsystem is nonsin-

gular and whose inverse matrix elements are

null above (below) some upper (lower) diag-

onal, the exact solution is reached in just one

step. Features of the GL method are illustrated

with a numerical example

I. INTRODUCTION

The need for solving symmetric positive de�nite

(SPD) linear systems Ax = b (with x 2 <N and

A = AT ) arises often in signal and image processing

applications. The methods for �nding x� = A�1b can
be classi�ed as direct and iterative [1]. For large sys-

tems, iterative methods are preferred to direct meth-

ods [1]; despite the in�nite time they generally need to

�nd x�, they often yield a solution within an accept-

able error with fewer operations than direct methods.

Moreover, round o� errors1 (or any other error) are

dumped out as the process evolves [1, 2, 3].

The Jacobi (J), the Gauss-Seidel (GS), and the

successive overrelaxation (SOR) methods are, proba-

bly, the most known and widely used iterative tech-

niques . They belong to the class of linear stationary

1For large and/or ill-conditioned systems, rounding errors

due to 
oating-point arithmetic are, frequently, the main prob-

lem of direct methods. Rounding errors can severely degrade

the solutions found.

iterative methods of �rst degree [2]. They are also clas-

si�ed as point iterative, since each iteration can be im-

plemented by solving simple equations for each system

component.

Group iterative methods [2] resemble the point it-

erative ones, replacing each individual component by

a group, such that each component belongs to one and

only one group [2]. If the groups form a partition of

the set S = f1; � � � ; Ng, the resulting method is known

as a block method [3]. Each of the above referred point

methods has a correspondent block method; namely,

the block Jacobi (BJ), the block Gauss-Seidel (BGS),

and the block successive overrelaxation (BSOR).

Block iterative methods were developed with the

purpose of increasing the convergence rate of the re-

spective point methods. Assuming that A is a M -

matrix, the BJ and BGS converge at least as rapidly

as the respective point counterparts [2]. On the other

hand, if A is Stieltjes and �-consistently ordered, then
the BSOR method, implemented with the optimum

relaxation factor, converges faster than the SOR [2].

It should be stressed that determining the exact or

approximate relaxation factor, necessary for the SOR

and the BSOR methods, frequently has such a high

cost that the method is impracticable2.

The main shortcoming of block methods is that

the error, after each iteration, tends to be larger on

the block boundaries than on its interior (this is il-

lustrated in section IV). The group lapped (GL) it-

erative method, presented in this work, operates (as

group methods) on groups of components. However,

contrarily to the block methods, in the GL scheme

groups are not disjoint. By overlapping the groups

in a proper manner, the distance between the compo-

nents being updated and the ones already updated is

kept constant. This is crucial concerning the achieve-

ment of greater convergence rates. On the other hand,

2A remarkable exception occurs whenever A has the so-called

property A [2].
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approximately, the same computational burden as the

Gauss-Seidel method.

II. Group Lapped Method

The GL method is supported on the iteration

groups3, in which the set of indices S = f1; : : : ; Ng
is divided into ordered subsets Si (non necessarily dis-

joint), such that [iSi = S; formally:

De�nition 1: An ordered segmentation g of S =

f1; : : : ; Ng is an ordered collection of subsets Si � S,
with i = 1; : : : ; ng such that [iSi = S. Two or-

dered segmentations g and g0 given by S1; : : : ; Sng
and S01; : : : ; S

0

n
g0

are identical if ng = ng0 and if

S1 = S01,: : :,Sng = S0n
g0
.

De�nition 1 di�ers from an ordered grouping [2] in that

the sets Si in the latter are disjoint.

Here, we restrict the GL method to the one-

dimensional (1D) oriented segmentation

g1(D) : Si = fi; i+1; : : : ; i+D�1g i = 1; : : : ; N�D+1;

which is adequate whenever A has all its signi�cant el-

ements close to the principal diagonal. This is usually

the picture in most 1D processing schemes. For 2D

problems de�ned on regular lattices, a segmentation

based on a group of overlapped lines or columns is a

better choice [4].

We now introduce a set of matrices depending on

A and on the segmentation g:

De�nition 2: Given an ordered segmentation g,
de�ne the diagonal matrix Di = diag(ISi(k); k =

1; : : : ; N), where ISi is the indicator function of set

Si. De�ne also Di = I � Di. Given A, let Qi be a

matrix obtained from A by setting to zero all rows r
and columns c such that r =2 Si and c =2 Si. Matrix

Qi is obtained from A by setting to zero all rows r
such that r =2 Si, and all columns c such that c 2 Si.
Further, let Gi = Qi +Di and Hi = �Qi +Di.

We now formally introduce the GL method:

GL Method Take the linear system Ax = b,
the ordered segmentation g, the cyclic schedule i =

tri(n; ng) � (n� 1)modng + 1 with n = 1; 2; : : : ; and
the starting vector x(0). Suppose that matrices Gi, for

i = 1; : : : ; ng are nonsingular. Then, the GL method

generates the sequence fx(n)g according to

x(n) = (G�1i Hi)x(n�1)+G�1i Dib n = 1; 2; : : : (1)

The following observations are in order:

3The designation of group is not to be understood in the

usual mathematical sense.

g y q

is ful�lled if A is positive de�nite. However, the

GL method applies to a wider class of matrices.

� The cyclic schedule i = tri(n; ng) is not a con-

straint, since any other schedule can be set by

rede�ning the segmentation g.

� For SPD systems, the GL method seeks the mini-

mum of F (x(n)) = (1=2)xTAx�bTx over the set
E(i; n) = fx 2 <N jxj(n) = xj(n� 1); j =2 Sig.
Thus, the sequence F (x(n)) is monotonically de-

creasing.

� The i-th update of xi(n) is an explicit function

of bi; : : : ; bi+D�1. In this way the GL method

embodies aspects of multigrid philosophy [5].

Successively applying iteration (1), with i =

tri(n; ng) = 1; : : : ; ng, and n = t ng + 1; : : : ; (t + 1)ng,
one obtains

x((t+ 1)ng) =Mx(t ng) +Nb; (2)

where

M =

i=1Y
i=ng

G�1i Hi; (3)

N =

0
@ng�1X

i=1

k=i+1Y
k=ng

(G�1
k
Hk)G

�1

i Di

1
A+G�1ng Dng :(4)

We introduce the subsequence x(n = t ng), with
t 2 N (the set of naturals), which is the output of GL

iteration after t full sweeps of index i in (1). The index
t in x(t) and the index n in x(n) will distinguish both

sequences. Using this notation, equation (2) becomes

x(t) =Mx(t� 1) +Nb t = 1; 2; : : : ; (5)

which is a linear stationary iterative method of �rst

degree [2]. If N�1 exists, the sequence fx(t)g is gener-
ated by the splitting A = B � C with B = N�1 and

C = N�1M .

Given an arbitrary initial starting vector x(0), the
sequence x(t) generated by (5) is convergent if and

only if M is convergent [2] (the spectral radius veri�es

�(M) < 1). Of course, the only interesting case is

limt!1 x(t) = x� = A�1b, which is veri�ed for each of

the following cases [4]:

1. under any segmentation, if A is symmetric and

positive de�ned

2. under segmentation g1(D), if any subdetermi-

nant of A, formed by deleting m rows and the

corresponding columns, is non-null, where 0 �
m < N , and the elements of A�1 = [rij ] meet
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the exact solution is reached in just one iteration

(M = 0).

Consider that rij 6= 0 for j � i � D. Then,

�(M) 6= 0 and x(t) converges geometrically to x�. On
the other hand, under segmentation g1(D), the com-

ponent xi(n) depends on bi; : : : ; bi+D�1. Thus, the

i-th update sees D components bj towards the future

(index j increasing). Contrarily, in the block meth-

ods the k-th component inside a block of dimension

D sees D � k components bj towards the future. Ac-
cordingly, it is expectable that the error near the block

boundaries be greater than the error in the middle of

the block. This is a major shortcoming of the block

methods.

III. A Gauss-Seidel iteration point of view

Consider the i-th iteration (1) with i+D � N : al-

though the groups Si have dimension D, only xi needs
to be computed. Notice that: 1) the components xj ,
j = i + 1; : : : ; i + D � 1 will be updated in the next

iteration; 2) the new values of the variables in block

Si+1, depend on xj(t) for j = i+D+1; : : : ; N , and on

xj(t+ 1), for j = 1; : : : ; i. Thus, in the i-th iteration,

only xi(t + 1) needs to be updated, being wasteful to

do the complete block computation4. With the above

facts in mind, one concludes that the GL output (1)

at n = t ng is given by

xi(t+1) =

 
b0i �

k=i�1X
k=1

a0ik xk(t+ 1)�
k=NX
k=i+1

a0ik xk(t)

!
;

(6)

for i = 1; : : : ; N , where�
b0i = [G�1j Djb]i1
a0ik = [G�1j Hj ]ik;

(7)

and

j =

�
i i � N �D
(N �D + 1) i > N �D:

(8)

Equation (6) de�nes a GS iteration over the system

A0x = b0 with A0 = [a0ij ], b
0 = [b0i]

T , and

A0 =

2
66666666664

1 0 � � � 0 � � � � � � � �

� 1 0 � � � 0 � � � � �

...
. . .

. . .
. . .

. . .
. . .

. . .
...

� � � � � 1 0 � � � 0 �

� � � � � � � �

... � � � � � �
... ID

� � � � � � � �

3
77777777775
;

(9)

4Except for the last block i = N �D + 1, where all compo-

nents have to be computed.

y y g

the splitting A0 = G0 �H 0, where G0 is the lower tri-
angular part of A0, the GS sequence (6) is also given

by

G0x(t+ 1) = H 0x(t) + b0: (10)

As D increases, A0 tends to a lower triangular and

H 0 to the null matrix. If H 0 is a null matrix, then,

the solution will be found in just one step; each el-

ement xi(1) is recursively determined from xj(1) for
j = 1; : : : ; i � 1. However, if H 0 6= 0, sequence (10),

can be thought of as a balance between recursiveness

and iterativeness.

A thorough analysis of equations (8) leads to the

conclusion that A0 = TA and b0 = Tb, with T = [tij ]
being an upper triangular matrix depending on ma-

trices G�1i with elements tij = 0 if j � i � D. This

confers to matrix A0 the interesting property of having
the same number of non-null diagonals as matrix A.

As D increases, the eigenvalues of A0 tend to be

closer to one (in magnitude) than those of A. Thus,

the GL method can be understood as a precondition-

ing technique [6]. This technique is applied to prob-

lems exhibiting slow convergence. For sparse matrices,

precondicioning has normally the disadvantage of in-

creasing the number of non-null elements. Therefore,

the reduction in the number of iterations must com-

pensate the extra computations per iteration. Given

that the GL method maintains the same number of

non-null diagonals, convergence is speeded up without

increasing the computational e�ort.

A parallel algorithm embodying the GL spirit,

and a comparison with multisplitting methods [7] is

proposed in [4].

IV. Numerical Results

The Toeplitz matrix A = [a�=j�i] with a� =

exp
h
�
�
�
a

�2i
is considered. Results in Table 1 were

computed for a =
p
3 and N = 64. Symbols �GL,

�BGS , and �SOR denote the spectral radii of GL, BGS,

and SOR iteration matrices, respectively. The con-

vergence rate R(�) is given by R(�) = � ln10 (�(�)).
The condition number (given by �(A) = �n(A)=�1(A),
where �n(A) and �1(A) are the largest and the small-

est singular values of A, respectively) of matrix A,
for a =

p
3, is �(A) ' 800. The SOR spec-

tral radius is �SOR = 0:93666, leading to the ratio

R(SOR)=R(GS) = 8:4.

The elements of A�1 = [rij ], verify jrij=riij � 0:1,
for j� j = jj � ij > 10. Thus, the high convergence rate

of GL method for D = 10 (R(GL)= 2:28) is essentially
in accordance with the result referred in Section II,

concerning one-sided banded A�1 matrices.

The superior performance of the GL method,
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D �GL
R(GS)

�BGS
R(GS)

GS� 1 0:99227 1 { {

2 0.95354 6:13 0:97307 3:52

3 0.85930 19:54 { {

4 0.71047 44:06 0.95525 5.90

5 0.53687 80.15 { {

10 0:05264 379.42 0.92107 10.60

Table 1: Spectral radii and convergence ratios.

compared with BGS, is evident for D � 1. Compared

with the SOR method, the GL has much higher con-

vergence rate for D � 3.

GL 

i-th component 
1 8 16 24 32 40 48 56 64

0.00001

0.0001

0.001

0.01

0.1

1
BGS 

|| xi(1) - xi ||2  / √ Ν * 

Figure 1: Error components for GL and BGS methods, after

the �rst iteration.

Assume now that a = 1. Although smaller, spec-

tral radii �GL, �BGL, and �SOR exhibit the same be-

havior evidenced for a =
p
3. Fig. 1 plots the error

components jxi(1)� x�i j, for i = 1; � � � ; 64, with b = 0,

x(0) = [1; � � � ; 1]T , and D = 8, after the �rst itera-

tion, for the BGS and the GL methods, respectively.

The BGS method displays an error as large as 600

times the GL error. This was to be expected given the

large magnitude of �BGS=�GL ' (0:17)=(2:72 10�6).
The interesting aspect is the shape of the BGS error,

exhibiting maxima at i = 8; 16; 24; 32; 40; 48, and 56,

and minima at i = 1; 12; 20; 28; 36; 44, and 52. A crude

justi�cation5 is the following: the error of each variable

inside the block increases with the errors of variables

outside the block and decreases as the distance to the

nearest boundary grows. In contrast, the GL method

keeps the distance to the variable with larger error at

a constant value of 8; the exception is the last block,

this not being a problem (for both methods) if the

variables in the last group do not depend on distant

groups.

5This argument is valid for matrices whose signi�cative in-

verse matrix elements are gathered around the main diagonal.

In this paper, we proposed an iterative algorithm

for solving large systems of linear equations. Al-

though applicable to a wide class of system matrices,

it was �rstly thought for SPD ones. The i-th and

(i + 1)-th iterations minimize the quadratic function

F (x) = (1=2)xTAx � bTx with respect to the over-

lapped groups of variables Si and Si+1, respectively.
Hence the name group lapped (GL).

For systems in which a given component de-

pends vanishingly on future (past) data components,

the method achieves hight convergence rates com-

pared with the point and block methods, with, ap-

proximately, the same complexity per iteration of the

Gauss-Seidel scheme applied to the original system. If

the inverse system matrix is one-sided banded, there

exist segmentations (a choice of the iteration groups),

such that the exact solution is found in just one iter-

ation.
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