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ABSTRACT
Many imaging systems,e.g., interferometric synthetic aper-
ture radar (InSAR), yield phase images. These systems re-
trieve the phase up to a modulo-2π rad ambiguity,i.e., the
phase is wrapped into the principal interval[−π π). Phase
unwrapping (PU) is, then, a crucial inverse problem to ob-
tain absolute phase, which is what embodies physical infor-
mation. If the phase difference between neighboring pixelsis
less thanπ rad, then, phase unwrapping can be obtained un-
ambiguously. This, however, is not always the case. For ex-
ample, in InSAR, where absolute phase is proportional to the
terrain elevation, we often face neighbor phase differences
much larger thanπ rad. The PU problem is even more chal-
lenging for noisy images. This paper proposes a diversity
approach, which consists of using two (or more) images of
the same scene acquired with different frequencies. Diver-
sity grants an enlargement of the ambiguity interval[−π π),
thus, allowing to unwrap images with high phase rates. Fur-
thermore, this paper presents a multi-resolution technique
to make denoising. We formulate both tasks as integer op-
timization problems, which we tackle by using graph cuts
techniques. We illustrate the effectiveness of our method-
ology by showing experimental results, which are, to our
knowledge, state-of-the art competitive.

1. INTRODUCTION

There are nowadays many applications based on phase. The
generation of digital elevation models, in interferometric
synthetic aperture radar (InSAR), and of tissue tempera-
ture maps, in magnetic resonance imaging (MRI), are two
paradigmatic examples. Imaging systems aimed at phase ap-
plications do not have access to the phase itself, but only
to its cosine and sine values. These systems can not infer,
therefore, the phase, but just its modulo-2π, the so-called in-
terferogram. This sinusoidal nonlinearity, jointly with other
degradation mechanisms usually present in phase applica-
tions such as noise, high phase rate, and discontinuities, ren-
ders absolute phase estimation a hard ill-posed inverse prob-
lem.

Diversity is an acquisition strategy where more than one
interferogram is acquired, each one corresponding to a dif-
ferent frequency of the sinusoidal nonlinearity. By acquiring
more than one interferogram, the number of phase solutions
compatible with the observations decreases and, therefore,
the hardness of the phase estimation problem is lightened.

Frequency diversity based phase estimation algorithms
are scarce. We are aware only of the ones proposed in [1],
[2], and [3]. Regarding the first one, it proposes three very
simple (and interesting) algorithms that, nonetheless, are er-
ror prone. The second one is a multidimensional (accounting
for diversity) version of the minimumL2 norm type of PU

algorithm [4], with relaxation to the continuum that is well-
known to give rise to solving a Poisson equation [4]. The
weaknesses of this approach are long-familiar, in particular
the oversmoothing of high phase rate slopes and discontinu-
ities. Concerning the third, it approximates the true surface
by means of local planes. The proposed approach requires a
simulated annealing computation which is a (nowadays) too
much slow optimization technique.

1.1 Contributions

The main contribution of this paper is to present a new algo-
rithm that accomplishes both phase unwrapping and denois-
ing based on diverse observations.

Our approach is Bayesian. The observation model ac-
counts for multiple sinusoidal noisy measurements and the
prior is a discontinuity preserving Markov random field
(MRF). The absolute phase is inferred by computing the
maximum a posteriori (MAP) phase, by exploiting graph-
cuts based energy minimization techniques. The algorithm
has two main steps:

1. Phase unwrapping: we input two (or more) different fre-
quency interferograms (of the same scene), which pro-
vides an extension of the[−π,π) ambiguity interval and,
consequently, an increasing of the phase rates that still
allow unwrapping to be a well-posed problem. This
frequencydiversity technique is put forward through a
graph-cuts algorithm [6, 5] that minimizes a MRF com-
posed of a sinusoidal data term plus a non-isotropic total
variation (TV) prior.

2. Denoising: we achieve denoising by an iterativemulti-
precisionMAP-MRF energy minimization graph-cuts al-
gorithm. As in the previous step, (Phase unwrapping),
the data term is sinusoidal, while a discontinuity preserv-
ing denoising prior is considered [7, 8].

2. PROPOSED FORMULATION

Let G = (V,E) be an undirected graph associated to a first
order Markov random field (MRF), where the set of nodes
V represents image pixels and the set of edgesE represents
pairs of neighboring pixels. In this paper the set of edgesE
represents horizontal and vertical neighbors.

2.1 Posterior density

We consider, as in,e.g., [9], the observation data model, for
each frequencyF , to be given by

z= ejF φ +n, (1)



whereφ is the absolute phase1, n is a complex zero-mean
Gaussian circular random variable (i.e., the real and imagi-
nary parts ofn are jointly Gaussian, zero-mean, independent
and have the same variance). Let us define also the wrapped
observed phase,ψ, as

ψ = angle(z). (2)

We follow the Bayesian framework. Accordingly, we
need to build the posterior densityp(φ |z) of the phase im-
ageφ ∈ R

|V| given the observed complex imagez∈ C
|V|

(C denotes the complex field). Invoking the Bayes law, we
have p(φ |z) ∝ p(z|φ)p(φ), where p(z|φ) is the likelihood
function, measuring the data fit andp(φ) is the prior density
encodinga priori knowledge about the phase imageφ .

Let us assume conditional independence in the observa-
tion mechanism,i.e., p(z|φ) = ∏i∈V p(zi |φi). Furthermore,
let us consider priors such that logp(φ) = −µ ∑(i, j)Vi j (φi −

φ j), whereµ > 0 is a scale parameter often termed the reg-
ularization parameter, andVi j (·) is the so-called potential as-
sociated with edge(i j ). In these circumstances, computing
the MAP estimate is equivalent to minimize the negative log-
arithm of the posterior densityE : R

|V| → R∪{+∞} given
by

E(φ) ≡ ∑
i∈V

Di(φi)

︸ ︷︷ ︸
Data fidelity term

+µ ∑
(i, j)∈E

Vi j (φi −φ j)

︸ ︷︷ ︸
Prior term

, (3)

whereDi(φi) ≡− logp(zi |φi).
Given the observation mechanism, (1) and (2), we have

(see e.g. [9])

Di(φi) = −λi cos(φi −ψi), for i ∈ V, (4)

with λi ≡ A|zi |/(2σ2) andψi ≡ angle(zi), i.e., the loglikeli-
hood function is proportional to a shifted cosine. The MAP
absolute phase estimate is then obtained by minimizing the
negative of the logposterior function given by

E(φ) ≡ ∑
i∈V

−λi cos(φi −ψi)+ µ ∑
(i, j)∈E

Vi j (φi −φ j) . (5)

Notice thatµ , the regularization parameter, sets the relative
weight between the data fidelity and the prior terms.

2.2 Diversity

In this paper we consider frequency diversity. For the sake
of simplicity, we take just two frequencies,F1 = p/q and
F2 = r/s, where{p,q, r,s} ∈ N. Assuming that observations
(2) are independent for each frequency, the negative loglike-
lihood is now given by (6)

Di(φi) = −λ1i cos
(
ψ1i −F1φi

)
−λ2i cos

(
ψ2i −F2φi

)
, (6)

where λ1i ,λ2i and ψ1i ,ψ2i are as in the in the single fre-
quency.

We have already alluded (Section 1.1) to the advantage
that frequency diversity gives in extending the[−π π[ am-
biguity interval. Stating it more clearly, it is easy to show
that the sum of two cosine functions, having as in (6) differ-
ent frequenciesF1 = p/q andF2 = r/s, where{p,q} ,{p, r},

1We use the term absolute phase to designate the unwrapped phase.

{q,s}, and{r,s} are coprime integers2, results in a third pe-
riodic function whose period isq×s; as the initial functions
do have periods of respectivelyq ands, we conclude that the
period is, in general, extended and so the ambiguity reduced.
This is the “beat production”, long known in wave physics.
It is a well known behavior,e.g., from wave phenomena, that
the greater the beat period extension, the smaller the differ-
ence between global and local maxima. Furthermore, it is
also well known that beat period extension brings noise am-
plification. This trade-off should then be taken into account.

2.3 Phase unwrapping with diversity

Introducing the data fidelity term in (6) into (3), we obtain

E(φ) ≡ ∑
i∈ν

−λ1i cos
(
ψ1i −F1φi

)
−λ2i cos

(
ψ2i −F2φi

)

+ µ ∑
(i, j)∈E

Vi j (φi −φ j) . (7)

In this section we solve only the phase unwrapping problem.
Assuming noiseless environment, there exists a unique cou-
ple of integer images,k1 and k2, such that the unwrapped
(true) phaseφ is given by

F1φ = ψ1 +2k1π, (8)

and
F2φ = ψ2 +2k2π, (9)

for two observations with frequenciesF1 andF2, respectively.
By adding (8) and (9) we get

φ =
1

F1 +F2
ψ +

2π
F1 +F2

k, (10)

whereψ ≡ ψ1 + ψ2, andk ≡ k1 + k2. Then, by introducing
(10) into (7) we get

E(k) ≡ ∑
i∈V

−λ1i cos

(
ψ1i −

F1

F1 +F2
(ψi +2kiπ)

)

+ ∑
i∈V

−λ2i cos

(
ψ2i −

F2

F1 +F2
(ψi +2kiπ)

)

+ µ ∑
(i, j)∈E

Vi j [(ψi −2ki)− (ψ j −2k j)] , (11)

with a correspondingly combinatorial optimization (min-
imization) to be done on variableski i ∈ V. We take
V [(ψi −2ki)− (ψ j −2k j)] = |ki − k j | the, so-called, non-
isotropic total variation (TV). This potential representsthe
best trade-off between the capability of preserving discon-
tinuities and the computational complexity of minimizing
E(k). At this point we make a parenthesis to stress that by
adding (8) and (9), we are choosing a symmetrical solution
regarding the expression ofφ in terms of the two frequency
diverse observations. Although this choice brings mathemat-
ical elegance (because of symmetry), it can be verified that
an asymmetrical solution, which can be obtained by formu-
lating (11) as a function ofk1 (or k2) only, brings shortness of
the time of algorithm execution. This is a consequence of al-
lowing a shorter excursion for thek variable. Accordingly, in

2Two integer numbers are said to be coprime if their greatest common
divisor is the unity.



Figure 1: Plot of a half-quadratic potential

the experiments shown in section 4, we have employed such
an asymmetrical choice.

We are aware of only two [5], [6] integer optimization al-
gorithms that are able to provide a global minimum for a pos-
terior energy like (11), which is composed by a non-convex
data fidelity term and a convex prior potential on the differ-
ence of pairs of variables. Herein we refer to [5], as it deals
with our non-isotropic TV prior. As long as the energy is a
levelable function (see [5]), it is easy to build a source-sink
graph such that its min-cut gives the sought global minimizer.
For the sake of simplicity we do not describe the graph con-
struction [5]; we just mention that graph min-cuts based al-
gorithms have been proved to be very popular in computer
vision, as there are plenty of low-order polynomial complex-
ity algorithms to compute them.

2.4 Denoising with multi-precision

The wrapped phasesψ are noisy. Therefore, even thoughk̂1,
the estimates of the 2π multiples provided by the PU step,
are correct, there is still noise in the absolute phase estimate.
For denoising, we take a half quadratic potential type like
the one plotted in Fig.1. This potential is quadratic in an
origin neighborhood of radiusπ in order to model Gaussian
noise, and with a flat trend elsewhere to preserve discontinu-
ities [10, 11]. We choose the radius ofπ because we expect
to get (most of the) noise wrapped into the interval[−π,π(
after the previous phase unwrapping step.

For the sake of clarity, we refer back to the posterior den-
sity expression (5), which writes energy asE ≡ E(φ). Our
goal is to computeφ∗ = argmin[E(φ)]. We note that the
objective function,E(φ), is non-convex (both in the data fi-
delity term and in the prior term), which makes this optimiza-
tion problem very difficult. To circumvent this problem, we
discretize the domain ofE, using a discretization interval∆.
In doing this, we convert the minimization inR|V|, whereV
denotes the set of pixels, into a combinatorial problem that
may be solved efficiently by computing flows on appropriate
graphs. We also definitely choose a sub-optimal solution.

We adopt a strategy in which the minimum ofE is
searched for in a sequence of increasing precisions. This
way we both avoid getting stuck in bad local minima (which
would be probable, had we started with high precision), and
we probably get close to optimization inR|V|. To this end,

let us definei ∈ V, δi ∈ {0,1}, and the sets

MU (φ ′,∆) ≡
{

φ ∈ R
|V| : φi = φ ′

i +δi∆
}

MD(φ ′,∆) ≡
{

φ ∈ R
|V| : φi = φ ′

i −δi∆
}

,

where∆ ∈ R.
Algorithm 1 shows the pseudo-code for our optimization

scheme.

Algorithm 1 Multi-precision denoising

Initialization: φ = ψ {Interferogram}, successup = false,
successdown = false

1: for ∆ = 2π ×
{

20,2−1, . . . ,2−N
}

do
2: while (successup = false OR successdown = false)do
3: if successup = falsethen
4: φ̂ = argminφ̂∈MU (φ ,∆) Ẽ(φ̂)

5: if E(φ̂) < E(φ) then
6: φ = φ̂
7: else
8: successup = true
9: end if

10: end if
11: if successdown = falsethen
12: φ̂ = argminφ̂∈MD(φ ,∆) Ẽ(φ̂)

13: if E(φ̂) < E(φ) then
14: φ = φ̂
15: else
16: successdown = true
17: end if
18: end if
19: end while
20: end for

Our algorithm engages on a greedy succession of up and
down binary optimizations. The precision of the minimiza-
tion, ∆, starts with the value 2π and ends with the value
2π/(2N) whereN is a depth of precision. We point out that
even if all the computations could have been done with the
highest∆ resolution level from the very beginning, choos-
ing this multi-resolution schedule increases dramatically (a
logarithmic improvement) the algorithm speed.

To solve the binary optimizations shown in lines 4 and 12
of Algorithm 1, we use the graph-cuts technique presented in
[12]. We further add that thẽE is a majorizer, on the prior
terms, ofE. So we apply a majorize-minimize (MM) tech-
nique such as the one applied in [8]. For details see,e.g.,
[8, 12]. We stress that we do not have any guarantees of
reaching a global minimum with Algorithm 1. This is so be-
cause, with generality, we are dealing with both non-convex
data fidelity terms and prior terms. However, results in a
series of experiments on simulated and real data have been
systematically state-of-the art3.

3. PROPOSED ALGORITHM

The previous sections culminate in our phase imaging algo-
rithm. It consists of a phase unwrapping stage and then de-
noising. Algorithm 2 shows a simple two lines high level
pseudo-code of our phase imaging algorithm.

3There are some works,e.g [3], that address phase reconstruction and



Algorithm 2 Phase imaging algorithm
1: Do phase unwrapping with diversity
2: Do denoising with multi-resolution

4. EXPERIMENTAL RESULTS

In this section, we briefly illustrate the performance of our
algorithm on two representative problems for which phase
unwrapping is a hard problem due to high phase rates of the
unwrapped images.

Fig. 2 (a) displays an image which is given by a Gaus-
sian having maximum height of 50π rad. Figs. 2 (b) and
(c) show the corresponding wrapped images acquired with
frequenciesF1 = 1/2 andF2 = 3/5, respectively, and having
signal-to-noise ratio (SNR≡ 1/σ2

n ) of 4 dB. Fig. 2 (d) dis-
plays an image of the unwrapped Gaussian, and Fig. 2 (e) a
corresponding 3-D rendering. Fig. 2 (f) shows a 3-D render-
ing after the denoising. It is clear that the algorithm made a
perfect phase unwrapping (up to a no-meaning additive con-
stant) for which the diversity information was crucial. The
result of the denoising step (ISNR= 0.0187 dB) is reflected
in Figs. 2 (g) and (h), which show the histograms (the axis
are in rad) corresponding to the error of the surfaces rendered
in Figs. 2 (e) and (f), respectively. It is noticeable that the de-
noising erases the secondary modes in the histogram. Fig. 2
(i) is a sheared parabolic ramp having maximum height of
225 rad. Figs. 2 (j) and (k) show the corresponding wrapped
images acquired with frequenciesF1 = 1/4 andF2 = 3/5 re-
spectively and have SNR= 7 dB. Fig. 2 (l) displays an image
of the unwrapped sheared parabolic ramp and Fig. 2 (m) a
corresponding 3-D rendering. Fig. 2 (n) shows a 3-D ren-
dering after the denoising. Figs. 2 (o) and (p) show the his-
tograms (the axis are in rad) corresponding to the error of the
surfaces rendered in Figs. 2 (m) and (n), respectively. Again
the algorithm made a perfect phase unwrapping for which
the diversity information was crucial. We emphasize that the
unwrapping preserves the discontinuity between the horizon-
tal and the parabolic ramps. Concerning the denoising step
(ISNR= 5.4792 dB), it is noticeable that the denoising erases
the secondary modes in the first histogram.

Still referring to the histograms, the ones corresponding
to the noisy images show, in general, a multi modal shape.
Besides the central mode, there are some secondary modes
departed around multiples of−2π and 2π from the center.
Those correspond to “spikes” as a result of the data observa-
tion model. After denoising they do disappear. We further
note that each final result was obtained in a few dozens of
seconds in a 3.0 GHz Intel PC. Furthermore all the free pa-
rameters were hand tuned in order to get the best results.

5. CONCLUDING REMARKS

We have proposed a (discontinuity preserving) denoising
Bayesian algorithm to phase unwrapping; to achieve phase
unwrapping we propose a diversity technique, while denois-
ing is to be dealt with by employing multi-precision. Among
the scientific community there is still an alive debate of
whether denoising should be done after phase unwrapping,
before phase unwrapping, or any other solution in-between.
In this paper, we have chosen the first option in order to

deal with high phase rates; however they do employ simulated annealing.

avoid the denoising step to corrupt the phase unwrapping
process. Our approach is a MAP-MRF one. We have cho-
sen both non-convex data fidelity and prior potential terms,
in the MRF, so there is no hope to find the global minimum
efficiently. Thus, we propose a sub-optimal minimization al-
gorithm.

The experimental results are encouraging; to our knowl-
edge they are state-of-the-art.

In the future we intend to develop learning schemes for
the selection of the best prior parameterµ , given some abso-
lute phase estimation problem, and get a deeper understand-
ing of noise in the multi-frequency scenario.
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Figure 2: (a) Original Gaussian phase image. (b) Image in (a)wrapped with a relative frequency of 1/2. (c) Image in (a)
wrapped with a relative frequency of 3/5. (d) Unwrapped image from the previous wrapped images shown in (b) and (c). (e)
3-D rendering of the image in (d). (f) 3-D rendering of the image in (d) after the denoising step. (g) Histogram corresponding
to the error of the surface rendered in (e). (h) Histogram corresponding to the error of the surface rendered in (f). (i) Original
sheared quadratic ramp phase image. (j) Image in (i) wrappedwith a relative frequency of 1/4. (k) Image in (i) wrapped with
a relative frequency of 3/5. (l) Unwrapped image from the previous wrapped images shown in (j) and (k). (m) 3-D rendering
of the image in (l). (n) 3-D rendering of the image in (l) afterthe denoising step. (o) Histogram corresponding to the error of
the surface rendered in (m). (p) Histogram corresponding tothe error of the surface rendered in (n).


