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Resumo

Reconhecimento de padroes e detecgdo remota sao areas de investigagao que,
nos tultimos anos, tém sofrido grandes desenvolvimentos. O facto da deteccao
remota ser uma area propicia as aplicagoes dos algoritmos de reconhecimento
de padroes, nao é alheio a esses desenvolvimentos.

A segmentacdo de imagens tem sido um dos problemas mais estudados em
reconhecimento de padroes. A sua aplicabilidade a um vasto niimero de dominios
tem levado a diversas abordagens, formulagoes e ferramentas. A deteccao remota
é um dos dominios onde a segmentacao de imagens tem um papel de extrema
importancia.

O processamento de imagens hiper-espectrais tem sido um dos grandes de-
safios para os algoritmos de reconhecimento de padrdes dado a problemética
relacionada com o fenémeno de Hughes. A informacado detalhada acerca das
assinaturas espectrais fornecida pelos sensores hiper-espectrais, levou ao desen-
volvimento de novos algoritmos capazes de lidar com a elevada dimensionalidade

dos dados. Contudo, esta é ainda uma area de investigacao em desenvolvimento.

Este trabalho, foca-se no desenvolvimento de métodos de classificacao e seg-
mentagao capazes de lidar com a elevada dimensionalidade dos dados, nomeada-
mente das imagens hiper-espectrais.

Esta tese apresenta um novo algoritmo de segmentacao Bayesiano com apren-

dizagem discriminativa das classes. O método proposto é composto por duas



partes: a aprendizagem das densidades das classes e a inclusao de informacao
espacial. O facto de a aprendizagem dos parametros necessarios em cada parte
do processo ser feita em dois passos consecutivos e nao simultneos conduz
a procedimentos computacionalmente mais leves. As densidades das classes
sao determinadas utilizando o algoritmo discriminativo proposto nesta tese: o
algoritmo rapido de regressao multinomial esparso (Fast Sparse Multinomial
Regression (FSMLR)). O algoritmo FSMLR introduz uma modificagdo no pro-
cedimento iterativo usado no SMLR. De forma a impor a esparcidade, o SMLR
utiliza um prior de Laplace. Em conjunto com a modificagao iterativa, o uso de
um prior alternativo (o prior de Jeffreys) é também proposto de forma a evitar
a afinacdo o parametro de esparcidade.

A informacao contextual é incluida na forma de dependéncias espaciais impostas
por um prior de Markov-Gibbs multi-nivel (MLL). A segmentacao éptima é dada
pela solucao de um problema de optimizacao discreto, que é determinada pelo

algoritmo a-Expansion.

A performance da abordagem proposta ¢ ilustrada num conjunto de experiéncias
executadas em diversas condicoes, tendo em conta a dimensao do conjunto de
treino. Quer o passo de estimagdo das densidades das classes, quer o passo
de segmentacao sao avaliados separadamente e os resultados comparados com

resultados de métodos de classificagao/segmentacdo recentes.
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Abstract

Pattern recognition and remote sensing are two areas of research that have
suffered great developments in recent years. The fact that remote sensing is one
of the most suitable areas for the application of pattern recognition algorithms
is not strange to those developments.

Image segmentation has been one of the most studied problems in pattern
recognition. Its application to a wide range of domains has lead to many different
approaches, formulations and tools. Remote sensing is one of the domains where
image segmentation plays a role of great importance.

Hyperspectral imaging has been one of the major challenges to pattern recog-
nition algorithms due the problematic related to the Hughes phenomenon. The
detailed information about spectral signatures provided by hyperspectral sensors
lead to the development of new algorithms capable of properly handling the high

dimensionality of the data. Nevertheless, this is still an active area of research.

This work focus on the development of methods for classification and segmen-
tation capable of dealing with high dimensional datasets, namely with hyper-
spectral images.

This thesis presents a new Bayesian segmentation algorithm with discriminative
class learning. The proposed method comprises two parts: the learning of
the class densities and the inclusion of spatial information. The fact that the

parameters required for each part of the process are learnt in two consecutive,
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but nonsimultaneous steps, conducts to lighter computational procedures. The
class densities are determined using a discriminative algorithm proposed in this
thesis: the Fast Sparse Multinomial Regression (FSMLR) algorithm. FSMLR
algorithm introduces a modification to the iterative method used in SMLR. To
enforce sparsity, the SMLR uses the Laplacian prior. In addition to the iterative
modification, the use of an alternative prior (the Jeffreys prior) is also proposed
to avoid the tuning of the sparsity parameter.

The contextual information is added in the form of spatial dependencies enforced
by a Multi-Level (MLL) Markov-Gibbs prior. The optimal segmentation is given
by the solution of a discrete optimization problem, which is efficiently solved

through the a-Expansion graph cut based algorithm

The performance of the proposed approach is illustrated in a set of experiments
carried out in different conditions, regarding the size of the training set. Both the
class density step and segmentation step are evaluated separately and results are
compared with recently introduced hyperspectral classification/segmentation

methods.
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Résumé

La reconnaissance de formes et la télédétection sont deux domaines de recherche
qui ont, ces dernieres années, souffert de grands développements. Le fait que
la télédétection est I'un des secteurs les plus appropriés pour ’application des
algorithmes de reconnaissance de formes n’est pas étrange a ces développements.
La segmentation d’image a été I'un des problemes les plus étudiés en la recon-
naissance des formes. Son applicabilité & des nombreux domaines a conduit &
plusieurs différents approches, formulations et outils. La télédétection est I'un
des domaines ou la segmentation d’image joue un role d’extréme importance.
Le traitement d’images hyperspectrales a été I'un des principaux défis qui s’ont
présenté aux algorithmes de reconnaissance de formes, a cause de la problématique
relative au phénomene de Hughes.

L’information détaillée sur les signatures spectrales fournie par les capteurs
hyper-spectrales a mené au développement de nouveaux algorithmes capables
de manipuler correctement la grande dimensionnalité des données. Néanmoins,

celle-ci est un domaine de recherche encore actif.

Ce travail se focalise dans le développement de méthodes de classification et
segmentation capables de traiter la grande dimensionnalité des données, notam-
ment des images hyperspectrales.

Cette these présente un nouvel algorithme Bayésien de segmentation avec ap-

prentissage discriminatif des classes. La méthode proposée comporte deux



parties : D'apprentissage des densités des classes et 'inclusion d’information
spatiale. Le fait de I'apprentissage des parametres nécessaires en chaque partie
de la procédure étre fait dans deux étapes consécutives et non simultanées
conduit & des procédures informatiquement plus légeres. Les densités des classes
sont déterminées en utilisant I'algorithme discriminatif proposé dans cette these:
lalgorithme de régression polynomiale clairsemé rapide (Fast Sparse Multi-
nomial Regression (FSMLR)). L’algorithme FSMLR introduit une modifica-
tion dans la procédure itérative utilisée dans SMLR. De maniere & imposer
I’éparsement, SMLR utilise un prior de Laplace. En plus de la modification
itérative, on propose aussi I'utilisation d'un prior alternatif (le prior de Jeffreys)
pour éviter le raffinage du parametre d’éparsement.

L’information contextuelle est ajoutée sous forme de dépendances spatiales im-
posées par un prior multiniveaux (Multi-Level, MLL) de Markov-Gibbs. La
segmentation optimale est donnée par la solution d’un probléeme d’optimisation

discrete, qui est efficacement résolu par ’algorithme a-Expansion.

L’exécution de I’approche proposée est illustré dans un ensemble d’expriences ef-
fectués aux conditions diverses, concernant la dimension de I’ensemble d’entraine-
ment. L’étape de densité de classe et I’étape de segmentation sont évaluées
séparément et les résultats sont comparés a ceux de méthodes de classifica-

tion/segmentation récemment présentées.
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Chapter 1

Introduction

Pattern recognition is a tool of vital interest in the remote sensing. The primary
goal of pattern recognition, correctly classify a pattern into one of several avail-
able classes, is frequently the solution for several problems in remote sensing.
Conversely, the intensive use of pattern recognition techniques in the remote
sensing field brought new developments to pattern recognition. This thesis is
an example of that.

Pattern recognition holds several techniques with direct applications in remote
sensing. Image classification and segmentation, feature extraction and selection,
matching, target detection and unmixing algorithms are among the most used
techniques in remote sensing area.

Although remarkably advances in pattern recognition have been made, the

advances in remote sensing still present new challenges to pattern recognition.

Hyperspectral imaging expands and improves capability of multispectral imag-
ing taking advantage of hundreds of contiguous spectral bands to uncover ma-
terials that usually cannot be resolved by multispectral sensors. This area has
been showing to be a fast growing one in remote sensing. However, the large

amount of data made available by hyperspectral sensors also comes with a price



2 CHAPTER 1. INTRODUCTION

that is related to the Hughes phenomenon: the difficulty in learning in high
dimensional densities from a limited number of training samples. This has been
one of the major problems to pattern recognition algorithms deal with.

Image classification is one of the most used tasks in remote sensing information
processing. The classification of remote sensing imagery for production of land
cover maps is much needed in several areas like forestry, agriculture, geology,
hydrology, cartography, economics, geography, etc. There is a wide range of
classification algorithm suitable for remote sensing image classification. The
major developments in statistical pattern recognition theory were during the
1960’s and 1970’s, with the formulation of pattern recognition as a Bayes decision
theory problem, nearest neighbour decision rules and density estimation, Fisher
linear discriminant, K-means algorithm, among others techniques. Since the
latter part of 1980’s new algorithms like neural networks and support vector
machines have been intensively applied to the classification of remote sensing
images. However, when applied to hyperspectral images, the majority of these
algorithms reveal problems in dealing with such an amount of information.
Support vector machines are more suitable for this type of data, having shown
good performance in dealing with high dimensional datasets.

The afore mentioned classification algorithms work based on the information of
each pixel considered as an individual. To improve the results of this type of
classification, contextual information should be added to the spectral informa-
tion available. Although the statistical dependence of neighbouring pixels was
considered in [113, 48], only recently the inclusion of contextual information
in remote sensing problems has becoming more frequent. The mathematical
foundation proposed by Geman and Geman [50] allowed for many posterior
work on Markov random field models. These models provide a rigorous mathe-
matical characterization of contextual information of textures from neighbouring
pixels on an image. Nevertheless, the application of powerful classification and

segmentation algorithms to hyperspectral images is compromised due the high



dimensionality of this type of data. The classification as well as the segmentation

of high-dimensional data are therefore active areas of research.

Both the problem of learning in high dimensional spaces, as well as the inclusion
of spatial information in the classification process motivated the work developed
in this thesis. The work here presented has as main goal the development of
classification and segmentation algorithms capable of deal with high dimensional
datasets, namely the hyperspectral images. Based on this, one may divide the
methodology here developed in two major parts: (i) the learning of the spectral
densities and (ii) the introduction of spatial information. With respect to the
former, we based our work on discriminative class learning algorithms due to
their capacity of learning directly the densities of the labels given the featues,
and their ability to produce sparse solutions. The sparsity of a classifier is of
major importance when dealing with high dimensional datasets.

Our main contibution consists in a modification to the Sparse Multinomial
Regression (SMLR) algorithm [66] wich resulted in the Fast Sparse Multinomial
Regression algorithm [14]. The algorithm here proposed is abble to learn the
class densities at a much lower computational cost than the original one, allowing
its application to high-dimensional datasets.

The SMLR originally proposed makes use of a Laplacian prior to enforce the
sparsity of the classifier. However, this implies the tunning of a sparsity parame-
ter which, when dealing with high dimensional datasets leads to computational
problems. In this work we propose the application of an alternative prior -
the Jeffreys prior - to enforce the sparseness of the FSMLR [17] avoiding the
parameter tunning.

Regarding the second part of the methodology - the inclusion of spatial infor-
mation - we worked based on the MRF theory. We present a new Bayesian
approach to hyperspectral image segmentation that boosts the performance of

the discriminative classifiers [15]. This is achieved by combining class densities
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based on discriminative classifiers with a Multi-Level Logistic Markov-Gibbs
prior. The discrete optimization problem one is led to is solved efficiently via

graph cut tools.

A study of the proposed methods in their different stages is carried out trough
their application to hyperspectral images. Both synthetic and benchmarked
datasets are used to evaluate the performance of either the densities learning
stage, as well as the segmentation process. This evaluation is made trough the
analysis of the overall accuracies of final results, as well as trough the analysis
of the degree of sparseness promoted in each case. The response of the methods

to different sizes of training sets will also be considered.

The present thesis is organized as follows:

Chapter 2 introduces the basic concepts of remote sensing. We start by re-
viewing the physics of remote sensing by presenting the information about the
electromagnetic spectrum followed by the interaction of the electromagnetic
radiation with both the atmosphere and ground targets. The process of how
multispectral and hyperspectral sensors acquire and register the energy radiation
ends this chapter.

Chapter 3 introduces the data classification problem. Most of the topics, like
the Bayes decision theory, are well known and established theories and may
be skipped. Nevertheless, they are used to introduce the main notation used
throughout the text. General concepts of a data classification problems are
given in the first section. We then focus our atention to the classification of
multispectral and hyperspectral images. The chapter is concluded with the
problematic of the spatial context in image classification.

In Chapter 4, we present the developed methodology to classify hyperspectral
images with a bayesian discriminative approach wich includes spatial informa-
tion using a multi-level Markov Gibbs prior. The SMLR method is first reviewd

both with a Laplacian and a Jeffreys prior, and then we propose the Fast-



SMLR. The chapter carries on with the inclusion of contextual information in
the process trough the introduction of a multi-level Markov-Gibbs prior. We
conclude this chapter with the MAP segementation description with the a-
expansion algorithm.

The datasets used to test and evaluate the developed methods, as well as the
conducted experimental procedures, are presented in Chapter 5.

Chapter 6, presents the results of the application of the proposed method
to several datasets. The results are grouped by dataset. For each dataset,
experiments with different conditions were made based on the type of prior, the
type of input function and inclusion of contextual information.

The final discussions and conclusions are presented in Chapter 7, ending with

the outline of future work.



Chapter 2

Remote Sensing Fundamentals

Remote sensing is the science (and to some extent, art) of acquiring information
about the Farth’s surface without actually being in contact with it. This is done
by sensing and recording reflected or emitted energy and processing, analyzing,

and applying that information.

This is definition of Remote Sensing is given by the Canada Centre for Remote
Sensing (http://www.ccrs.nrcan.ge.ca). To easily understand the meaning of
remote sensing, let us say that remote sensing is a rather simple, familiar
activity that we all do as a matter of daily life: observe all that surround
us. Our eyes are our remote sensors that capture the light, sending a signal
to our brain (our processor) which records the data and interprets this into
information. Human vision may be used as a parallel to better understand what
remote sensing is, however this is not usually interpreted as remote sensing.
In practice, remote sensing refers to instrument-based techniques rather then
human visual capacities. Hence, remote sensing is the science of obtaining
information about an object, area or phenomenon trough the analysis of data
acquired by a recording device that is not in physical or intimate contact with the

object, area or phenomenon under study. The devices that measure or collect the
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information of some property of an object, area or phenomenon are the sensors
(camera, lasers, radio frequency receivers, radar systems, sonar, seismographs,
gravimeters, magnetometers, etc.). The information acquired, depending on the
sensor used, may be measurements of force fields, electromagnetic radiation, or

acoustic energy.

This chapter is devoted to introducing the basic concepts of Remote Sensing
(RS), restricted to the electromagnetic radiation. We will first introduce the
physics of RS and then we will proceed to a characterization of multispectral

and hyperspectral sensors.

2.1 The Physics of Remote Sensing

2.1.1 The Electromagnetic Spectrum

Electromagnetic (EM) energy can best be described as waves of electric and
magnetic energy moving together through space, this type of energy is emitted

by natural sources like the sun, the earth and the ionosphere.

EM energy-based sensors collect information based on the way that a body
emit and reflect the EM energy, which is in the form of EM radiation. All EM
radiation has fundamental properties and behaves in predictable ways according
to the basics of wave theory. Depending on the behaviour of the wavelength,
the EM radiation is generally classified into radio, microwave, infrared, the
visible region we perceive as light, ultraviolet, X-rays and gamma rays (from
longer to shorter wavelengths). The behaviour of EM radiation depends on
its wavelength. Also, the wavelength is inversely related to the frequency.
Higher frequencies have shorter wavelengths, and lower frequencies have longer
wavelengths. Understanding the characteristics of EM radiation in terms of

their wavelength and frequency is crucial to understanding the information to
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be extracted from remote sensing data. The EM spectrum (figure 2.1) is the
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Figure 2.1: The electromagnetic spectrum.

range of all possible EM radiation wavelengths (or frequencies), from the shorter
wavelengths (including gamma and x-rays) to the longer wavelengths (including
microwaves and broadcast radio waves). The ultraviolet (UV), the visible, the
infrared (IR) and the microwave portion of the EM spectrum are of particular

interest in remote sensing.

Any body whose temperature is above absolute zero (0 K or -273degC) radiates
EM energy. Therefore, terrestrial objects also radiate at several wavelengths.
EM radiation with a wavelength between approximately 400nm and 700nm can
be detected by the human eye and perceived as visible light. However, there is
a lot of radiation around us which is invisible to our eyes, but can be detected
by other remote sensing instruments and used to our advantage. Regarding the
sections of the EM spectrum considered in remote sensing, there are certain
objects that are easily detectable at specific wavelengths. For example, while
rocks and minerals fluoresce or emit visible light when illuminated by UV
radiation; the green vegetation has a higher response in the IR region. The
possibility of gather EM information in a wider section of the EM spectrum

than just the visible portion increases the potential of remote sensing, allowing



2.1. THE PHYSICS OF REMOTE SENSING 9

to better distinguish different targets.

There are two types of EM energy-based sensors: the passive and the active
sensors. The passive sensors are characterised for capturing the energy that is
naturally available. This means that it should exist an external energy source
to illuminate the target (generally the sun), and for that reason, this type of
sensors can only be used when that source is available. On the other hand,
the active sensors are characterised for providing their own source of energy to
illuminate the target of interest. This property allows the use of these sensors at
any time of day or season. However, when compared with the passive sensors,
the cost of using this sensors is very high. The type of sensors used in this work

are passive Sensors.

2.1.2 Atmosferic interactions

The primary source of energy that illuminates natural targets is the sun, but it
is not the unique source. Independently of the source, once the EM radiation
enters into and propagates through the earth’s atmosphere, the particles and
gases in the atmosphere affect its properties including the speed and direction
of propagation, the wavelength, the intensity, and the spectral distribution.
The intensity and spectral composition of radiation available to any sensor
are therefore affected. These effects are mainly caused by the mechanisms of

absorption and scattering [74].

Absorption is the phenomena in which some gases that comprise our atmosphere
absorb radiation in certain wavelengths. Ogzone, carbon dioxide, and water
vapour are the three main atmospheric constituents which absorb radiation.
The EM spectrum areas where this phenomenon occurs are known as absorp-
tion bands. The wavelength ranges in which the atmosphere is particularly

transmissive of energy are referred to as atmospheric windows. Figure 2.2 shows
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Figure 2.2: Atmospheric windows and absorption bands.

the percentage of light transmitted at various wavelengths, and the sources of
atmospheric opacity are also given. Both passive and active remote sensing
technologies do best are usually limited to operate within the atmospheric
windows. Outside these windows, there is no radiation from the sun to detect

because the atmosphere has blocked it.

Scattering is the other main mechanism at work when electromagnetic radiation
interacts with the atmosphere. Scattering occurs when radiation is reflected
or refracted by atmospheric particles. Examples of those particles are gas
molecules, dust, smoke, pollen, cloud droplets, raindrops, etc. When prop-
agating through the atmosphere, radiation may be unpredictably redirected
(scattered) into various directions by these atmospheric particles. The size of
atmospheric particles relative to wavelength of incident radiation affects the
occurrence of different scattering types. The degree of scattering effect depends
on several factors such as the geometric shape and abundance of the particles or
gases, the wavelength of radiant energy, and the distance the radiant flux travels

through the atmosphere. The scattering is usually divided into three categories:

o Rayleigh scattering: Rayleigh scattering occurs when the size of atmo-
spheric particles are much smaller than the wavelength of the incident

EM radiation. The amount of scattered energy by Rayleigh scattering
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is inversely proportional to the fourth power of wavelength of radiation
causing shorter wavelengths of radiation to be scattered much more than
longer wavelengths. The blue sky and red sunset are typical examples
of Rayleigh scattering. Rayleigh scattering is the dominant scattering

mechanism in the upper atmosphere.

e Mie scattering: exists when the size of atmospheric particles such as smoke,
haze, pollen and dust are comparable to the wavelength radiation. This
scattering, compared to Rayleigh scattering, tends to affect longer wave-
lengths. Also, it mostly occurs in the lower portions of the atmosphere
where larger particles are more abundant, and dominates when cloud con-

ditions are overcast.

e Non-selective scattering: it occurs when the particles are much larger than
the wavelength. The effect of nonselective scattering is approximately the
same in all scattering directions and is almost independent of wavelength.

This is why fog and clouds appear white.

Due to these atmospheric effects, the sensor’s incoming information is largely
contaminated and do not directly characterize the reflectance of surface objects.
To use this information efficiently in remote sensing applications, these effects
should be removed. The objective of atmospheric correction is to retrieve
the surface reflectance (that characterizes the surface properties) from remotely
sensed imagery by removing the atmospheric effects. Atmospheric correction
algorithms basically consist of two major steps. First, the optical characteristics
of the atmosphere are estimated either by using special features of the ground
surface or by direct measurements of the atmospheric constituents or by using
theoretical models. Various quantities related to the atmospheric correction can
then be computed by the radiative transfer algorithms given the atmospheric

optical properties. Second, the remotely sensed imagery can be corrected by
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inversion procedures that derive the surface reflectance. Atmospheric correction
has been shown to significantly improve not only the quality of the observed
earth surface imaging but also the accuracy of classification of the ground

objects.

2.1.3 Interaction with targets

The radiation that manages to pass through the atmosphere (is not absorbed
or scattered) will reach and interact with objects/materials at the surface of
Earth. Three fundamental interactions will when energy strikes, or is incident
upon the surface: absorption, transmission and reflection. The total incident
energy is the sum of these three interactions, the proportions of each will depend
on the wavelength of the energy and the material and condition of the feature.
Absorption occurs when, at a given wavelength, the EM energy incident on a
given surface is absorbed and converted to other forms of energy. Transmission
is the process by which the incident EM energy on a surface propagates trough
that surface. Reflection occurs when EM energy is moves away from the target at
specific angles and /or scatters away from the target at various angles, depending

on the surface roughness and the angle of incidence of the rays.

Remote sensing instruments are mostly devoted to measuring and registering
the radiance reflected by the targets or areas of interest. There are two extreme
types of reflecting surfaces that interact with EM radiation: specular (smooth)
and diffuse (rough). Reflection is said to be specular when radiation is reflected
according to Snell’s Law which states that the angle of incidence is equal to
the angle of reflectance, i.e., show a mirror like behaviour. Reflection is said
to be diffuse when the surface is rough and the energy is reflected almost
uniformly in all directions. Figure 2.3 illustrates the geometric characterization

of ideal and near-perfect specular and diffuse reflectors. In general, natural
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Figure 2.3: Specular vs. diffuse reflectors (adapted from [74]).

surfaces are almost always diffuse and depart significantly from specular at
shorter wavelengths (into the infrared) and may still be somewhat diffuse in

the microwave region.

As we saw, there are several aspects that affect the radiance of a target registered
by a sensor. Depending on the chemical composition and physical characteristics
of the target of interest, and the wavelengths of radiation involved, we can
observe very different responses to the mechanisms of absorption, transmission,
and reflection. For any given material, the amount of radiation that it reflects,
absorbs, transmits, or emits varies with wavelength. Plotting the reflectance as
a function of wavelength, results in a spectral reflectance curve. The spectral
signature of a given material uniquely identifies that material, accordingly with
the measured reflectance at varying wavelengths. Figure 2.4 shows an example
of spectral signatures for three materials present in earth surface: healthy
vegetation, dry bare soil and clear lake water. This important property of matter
gives us a powerful tool to discriminate between different materials present in
the earth surface. The variability of the spectral signatures between different
targets allow us to identify the type and/or condition of those targets. Although
a spectral response for the same type of target may be quite variable (depending
for example on time and /or location recorded), spectral signatures are a suitable
choice to identify the land cover type in remotely sensed imagery. The spectral
signatures may be successfully used as input vectors to a pattern recognition

system.
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Figure 2.4: Typical reflectance curves for vegetation, soil, and water.

2.2 Multispectral and Hyperspectral sensors

In the beginning of this chapter we identified the goal of remote sensing as the
acquisition of information about the earth surface. That information can be
retrieved trough the EM response of the different materials present at the earth
surface. In previous sections we have been discussing the principal sources of
EM radiation, and the interaction of this radiation with both the atmosphere
and ground targets. We will now focus on how this EM radiation is acquired

and registered.

To the devices that capture the EM energy from the objects at the earth
surface, we call sensors. The energy may be detected either photographlly or
electronically. While the process of photography detects and records the energy
variations using a light-sensitive film; electronic sensors generate an electrical
signal that corresponds to the energy variations in the original scene [74]. We
will consider the last type of sensors, electronic ones. The process of generating
the electrical signal is initialized when the radiative flux of a given point over

a target’s surface strikes a photosensitive device in the sensor. Composed by a
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number of lines or arrays of photodiodes!, this device is sensitive to EM radiation
within a discrete portion of the EM spectrum in each of the arrangements of
photodiodes, each of them is termed spectral channel or spectral band. The
amount of electric charge converted by each photiode is directly proportional
to the incident radiative flux, and is then quantized to a discrete number, the

digital value.

Typically, each digital value is stored in a two-dimensional array of discrete
picture elements, or pizels, forming an image channel. To each of the bands
of differing wavelengths, there is a corresponding image channel. The set of
these image channels form a multispectral image. Figure 2.5 shows a collection

of seven image channels.
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Figure 2.5: A multispectral image as a collection of image channels.

Resolution allows to measure of the ability of an optical system to distinguish
between signals that are spatially near or spectrally similar [61]. There are
four major resolutions associated with a remote sensing system: temporal,

spatial, radiometric and spectral resolution. These resolutions are also used

LA photodiode is a type of photodetector capable of converting light into either current or

voltage, depending upon the mode of operation.
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to characterize a remote sensor and the correspondent imagery.

Temporal resolution is defined as the frequency at which images are registered in
a particular area at the same viewing angle. The more frequently it is captured,
the better or finer the temporal resolution is said to be. In the case of on board
satellite sensors, the temporal resolution is related to the time it takes to the

satellite to complete one entire orbit cycle.

The instantaneous field of view (IFOV) of a sensor primarily defines the spatial
resolution of a sensor. The IFOV is the angular cone of visibility of the sensor
and determines the area on the Earth’s surface which is seen from a given
altitude at one particular moment in time. For practical purposes, the spatial
resolution gives the ground area that is represented by each pixel in a remotely
sensed image. Therefore, a higher the spatial resolution gives more detailed
information about the ground cover. In the case of fixed-distance platforms
(the IFOV is fixed), such as EO satellites, the spatial resolution is simply the
dimension of the ground-projected IFOV. When this is not the case, the size of
the area viewed may be determined by multiplying the IFOV by the distance

from the ground to the sensor.

Radiometric resolution is defined by the sensor sensitivity to the magnitude of
the EM energy reflected or emitted by the target. Radiometric resolution is
usually expressed as a number of levels or a number of bits, for example 8 bits
or 256 levels. The finer the radiometric resolution of a sensor, the better subtle

differences of intensity or reflectivity can be represented.

The spectral resolution of a sensor is defined by the number and dimension of
specific wavelength intervals in the EM spectrum to which a remote sensing
instrument is sensitive. There are certain regions of the EM that are optimum
for obtaining information on biophysical parameters (see figure 2.2). Careful

selection of the spectral bands may therefore improve the EM energy quality
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received by the sensor.

Regarding the spectral resolution, there are two major types of sensor: the mul-
tispectral and the hyperspectral sensors. Multispectral sensors record radiant
energy in few bands of the EM spectrum. These spectral bands are usually non-
contiguous and broad, reflecting a lower spectral resolution. The hyperspectral
sensors acquire images in many, very narrow, contiguous spectral bands. While
the number of spectral bands of a multispectral sensor is on the order of tens,

the hyperspectral sensors have hundreds of spectral bands.
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Figure 2.6: The imaging spectrometry concept.

Figure 2.6 shows the concept of hyperspectral imaging (or imaging spectrom-
etry): the hundreds of adjacent narrow spectral bands collect within a given
spectral range, enables the construction of an almost continuous reflectance

spectrum for every pixel in the scene allowing the identification of the surface
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materials. It is known however that in practice, a pixel’s signature generally
includes a mixture of more than one type of material. To deal with this problem,
spectral unmixing algorithms are applied. This subject will be referred in more

detail in section 3.4.

The stable platform in which the sensor resides to collect and record the re-
flected energy from a target surface is usually situated on an aircraft or on
a spacecraft (or satellite). Depending on the location, within or outside the
Earth’s atmosphere, the sensors are known as airborne or spaceborne sensors,
respectively. The main difference between these two type of sensors has to do
with the altitude at which the data is collected and the field of view (FOV)
of each sensor. These two aspects are intimately related and highly influence
the EM energy detected by the sensors inducing both spectral and geometrical

effects in the images.

Concerning the altitude of each sensor, the fact that airborne sensors are able
to fly at lower altitudes than spaceborne sensors, allow them to provide higher
spatial resolution images. Another significant difference between these two type
of sensors has to do with the FOV?2. Since the satellite altitude is higher, the
FOV of spaceborne sensors is much less wider than the airborne sensors (around
45deg off nadir in this case, and around 5deg in the former one). This wide FOV
of airborne sensors will conduct to a geometric distortion in pixel size from nadir

to maximum viewing angle.

In the case of satellite imagery, the fact of imaging through the entire atmosphere
leads to atmospheric effects not detected in the airborne sensors. On the other
hand, airborne sensors with wide FOV optics have problems related to imaging
trough widely varying slant paths through the atmosphere while narrow FOV

satellite sensors have not. Also, significant changes in viewing geometry across

2Note that while IFOV has to do with a single photodiode, FOV is the angle through which
EM radiation is detected by the sensor
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the extent of an aircraft image may result in changes in spectral signatures due
the variations in the BRDF of the terrain, while such effects are less significative
in satellite imagery. In exchange, the true atmospheric characteristics generally
do not vary across the limited extent of the aircraft imagery, while dramatic

changes in haze and visibility often occur in satellite imagery.

Geometric distortions are also added to airborne imagery due to the platform
motion. The variations in flight conditions, lead to changes in aircraft position

(roll, pitch and yaw) that cause non-uniform ground sampling.

As seen, concerning to the quality of the images, both types of sensors have ad-
vantages and disadvantages. In either case the imagery should be geometrically

and atmospherically corrected with adequate postprocessing methods.

With respect to the acquisition of the images of a specific area, with given
temporal and seasonal characteristics, it is easier to achieve that with airborne
sensors due the higher flexibility of scheduling a flight with those requirements.
Another positive aspect of airborne sensors has to do with their general capacity

of providing a larger amount of data.

In this thesis images from two airborne hyperspectral sensors were considered:
from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and from
the Reflective Optics System Imaging Spectrometer (ROSIS).

The AVIRIS, which was first flown in 1987, was one of the first airborne systems
with imaging spectroscopy and was produced by NASA’s Jet Propulsion Lab
(JPL). This sensor was developed to increase the spectral and spatial coverage
of the first airborne imaging spectrometer (AIS) created in 1982 by the same

laboratory.

AVIRIS typically flown onboard the NASA/ARC aircraft, however, there are

more three aircraft platforms also used (Twin Otter International’s turboprop,
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Scaled Composites’ Proteus, and NASA’s WB-57). The image used in this work
was acquired with a ER-2 flight. The flight altitude defines the data pixel size
and swath width. Considering the ER-2, it usually flies at approximately 20 km
above sea level, has a 30deg FOV and a IFOV of 1.0mrad, producing images
where each pixel cover an area of approximately 20m diameter on the ground.
The AVIRIS instrument uses a whiskbroom scanning mirror (sweeps back and
forth), producing 677 pixels in each scan thus yielding a ground swath about
11km wide. An AVIRIS scene is a set of 512 lines of data, and corresponds to

an area about 10km long on the ground.

Figure 2.7: Conceptual representation of AVIRIS data acquisition.

This instrument manages to cover the entire spectrum range between 380nm
and 2500nm, by using 224 different detectors with a spectral bandwidth (wave-
length sensitive range) of approximately 10nm. Therefore, each pixel contains
information of each of the 224 spectral bands. When the data from each detector

is plotted on a graph, it yields a complete VIS-NIR-SWIR spectrum [51, 53].
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The data are recorded in 12bits (values from 0 to 4095). Figure 2.7 presents a

conceptual representation of AVIRIS data acquisition.

The ROSIS sensor was developed prior to 1992 by Dornier Satellite Systems
(DSS formerly MBB) in cooperation with the GKSS Research Centre (Institute
of Hydrophysics) and with the DLR [49]. The detection of fine spectral struc-
tures in coastal and inland waters was the original goal of this sensor. This
determined the selection of the spectral range, the bandwidth, the number of
channels, the radiometric resolution and the possibility of off-nadir pointing to
avoid sun glint. Nevertheless, this sensor had been used for monitoring spectral
features ashore or within the atmosphere. An example is it inclusion in the

Hysens project.

The DLR Hysens project included two hyperspectral sensors (DAIS and ROSIS)
and hyperspectral processing facilities with the aim of introduce airborne hyper-
spectral imaging techniques and optical calibration techniques to environmental

scientists. This project was active between 2000 and 2002 [84].

ROSIS makes use of a two-dimensional CCD array. The first dimension is used
to scan a narrow cross track line on the ground, the second one is for acquiring
the spectral information of each scanned pixel. This gives the possibility for

imaging simultaneously 115 spectral bands of 512 picture elements.

Some data characteristics depend on the flight altitude. Within the HySens
project, a FOV of 16deg and a IFOV of 0.56mrad were defined with a pushbroom
scan principle and 512 pixels per line. This resulted in a ground resolution from
1lm to 6m. The data was recorded in 14bit. The spectral area covered by
the ROSIS is between 430 and 860nm, with a spectral sampling of 4nm. The
preprocessing of the ROSIS data, including system corrections and radiometric

calibration, was carried out by the DLR in the scope of the HySens project.

The main characteristics of the airborne AVIRIS and ROSIS hyperspectral
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remote sensing systems are summarized in table 2.1.

Table 2.1: Characteristics of the airborne AVIRIS and ROSIS hyperspectral

remote sensing systems

AVIRIS ROSIS

Technology Whiskbroom Pushbroom

linear array  area array CCD

Spectral Resolution (nm) 400-2500 430-860
Spectral Interval (nm) 10 4
Data Collection Mode 224 bands 115 bands
Dynamic Range (bits) 12 14

IFOV (mrad) 1.0 0.56

FOV (deg) 30 16




Chapter 3

Data Classification

This chapter is devoted to introducing basic data classification concepts and
notation used throughout the thesis. Initially the general concepts of classifi-
cation are presented, both in supervised and unsupervised approaches and the
validation techniques. Then the problem of image classification is addressed, and
more specifically directioned to multi and hyper-spectral images. The chapter is

finalized with the introduction of spatial context in the classification processes.

3.1 General Concepts

In every day task, we automatically identify objects, persons, sounds, smells,
and every thing that surround us almost without thinking about it. In some
situations we make a greater effort to do that identification by associating
characteristics observed or felt to something that we had already seen or felt
before, or to something that someone already told us about. This ability is
taken for granted because we have it since we are born. Also, we are continuously
learning and improving this capacity. This process can be called as classification

or pattern recognition. This mechanism of classification is assumed to be easy

23



24 CHAPTER 3. DATA CLASSIFICATION

for us, until we face the task of teaching a machine to do the same.

Jain et. al [59] define pattern recognition as the study of how machines can
observe the environment, learn to distinguish patterns of interest from their
background, and make sound and reasonable decisions about the categories of

the patterns.

Automatic recognition is widely used in a large range of applications like biology,
psychology, medicine, marketing, computer vision, artificial intelligence and
remote sensing. In all these areas there are constantly problems related to
the identification of grouping patterns, classification of individuals/observations,
and the automatic recognition is a powerful tool to help and make decisions
related with these problems. Automatic recognition often produces faster deci-
sions with no need for human intervention, for example in the identification of

number plates in a parking lot, fingerprints, post distribution machines, etc.

Analogously to what happens with human decision process, the automatic recog-
nition is based on the object/individual characteristics observed. For example,
if we want to identifying our umbrella left among others, we start by identify the
colour, size and shape. An appropriate functional dependency or relationship
between those variables lead us to a decision (is it mine or not?). The evaluated
characteristics are called features or variables, and in the statistical approach
they can be represented in terms of a d-dimensional vector where the position
J, 7 € {1,...,d}, measures the response of the observed object/individual in
a given characteristic. Let us then represent real world objects as a feature
vector x; = [241,...,T;q] where each component is associated with each one
of the d features. This object representation is known as input vector, also
called observation, individual, predictor or independent variables. The goal of
automatic recognition is to predict the group to each individuals belong, given

the observed features.
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It is desirable that these groups form compact and disjoint regions of points
in the d-dimensional feature space. The set of objects to be grouped will be
represented as x = [z1,...,%y), where each x;, i = 1,...,n presents a single

input vector.

3.1.1 Supervised and unsupervised approaches

Statistical classification consists in assigning a label to each object present in x,
given their observed features. Classification is said to be supervised if there
is a set of objects which have known labels. These samples can be represented
as the set {(x1,y1),...,(Tn,yn)}, were y; is the label (or class) identified with
object x;. In this case, the classifier is generated based in the information given
by these paired samples, called training samples.

Supervised learning may be seen as a learning system where there is a teacher
that provides a category label for each pattern in a training set, and seeks to
reduce the sum of the costs of these patterns [38]. Under these circumstances,
the cost is nothing less than the price to pay for assigning a wrong label to
an object. However, there are problems for which training data, of known
class labels, are not available. When this happens (no knowledge about the
object labels), we have unsupervised classification or clustering. In this type
of problem, we are given a set of feature vectors x and the goal is to unravel the
underlying similarities, and group similar vectors together. Using the teacher
metaphor, in the case of unsupervised learning there is no explicit teacher, and
the system forms clusters or natural groupings of the input patterns [38]. To
measure the similarities between groups and/or observations several similarities
measures have been developed. The most commonly used are simple distance

measures such as Euclidean distance and L1 distance.

These two types of classification methods comprise a vast number of algorithms.
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In fact, each of these two classification areas may be divided in other groups of
classification algorithms, this subdivision may vary from author to author.

In the case of unsupervised learning, algorithms generally are based on the
following two popular clustering techniques: iterative square-error partitional
clustering and hierarchical clustering [59].

Hierarchical algorithms rely on ideas of matrix and graph theory to produce
either increasing (divisive algorithms) or decreasing (agglomerative algorithms)
number of clusters each step, thus producing a hierarchy of clusters. Each
level of the hierarchy represents a particular grouping of the data into disjoint
clusters of observations. This nested sequence of groups is represented by a
dendogram or a tree. Square error partitional algorithms attempt to obtain that
partition which minimizes the within-cluster scatter or maximizes the between-
cluster scatter. The optimum partition is computed iteratively using differential
calculus concept. Well-known algorithms of this type are the k-means [75] and
Fuzzy K-means [40]. Both in hierarchical and partitional algorithms it is the
user that should define the number of classes K, which sometimes may not be
an easy task, mainly because every clustering algorithms will find clusters in
a given dataset whether they exist or not. To better deal with this problem,
there are some methods to automatically select the number of classes present
in the image [77]. Another challenging problem in clustering algorithms is the
selection of the appropriate measure of similarity to define clusters which, in

general, is both data (cluster shape) and context dependent.

Supervised classification methods are extensively used in pattern recognition.
This type of methods can be categorised according to several criteria. Some
authors [103] suggest three main groups: Bayesian classifiers, linear classifiers

and non-linear classifiers.
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3.1.2 Bayesian classifiers

Bayesian decision theory is the basis of Bayesian classifiers. To briefly review this
theory, let us assume that there are K possible classes, and consequently each
pattern y; should take one of these values k € {1, ..., K}. The probability model
for a classifier is given by a conditional model P(y; = k|x;), k € {1,..., K} and
i=1,...,N. These conditional probabilities represent the likelihood of a given
object x; belong to each of the K classes involved. The Bayes classifier gives
us a reasonable solution which says that we classify x; to the most probable
class, using the conditional distribution. The optimal Bayes decision rule can

be stated as: assign the input pattern z; to class k if
p(yi = klzi) > plyi =lx), VE#AL k, le{l,...,K}. (3.1)

The problem is then how to estimate these a posteriori probabilities p(y|x).
Bayes decision theory assumes that the a priori probabilities (or simply prior)
p(y) and the class-conditional probability density p(x|y) are known. The prior
probabilities reflect our prior knowlodge of how likely we are to get a given
class. The class-conditional probability density function, gives us the likelihood
of y with respect to x for which p(x|y) is large is more ”‘likely”’ to be the true
class. When these terms are not known, what is done is estimate them from the
training data.

Using Bayes formula it is possible to convert the prior probability to the a
posteriori probability by observing the value of x:

p(x[y)p(y)
plylx) = ; (3.2)
p(x)
where p(x) is the probability density function describing the training data,
irrespective of its class. This term can be viewed as merely a scale factor that

guarantees that the posterior probabilities sum to one. This formula can be

expressed informally in English by saying that

likelihood x prior

(3.3)

posterior = -
evidence
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Based in the rule exposed in 3.1, the labelling generated by this classifier is then
given by:

y = argmazy,—1... kp(yilx) = argmazy,—1,.. x {p(x|yi)p(yi)} - (3.4)

This type of classifiers family is also known as the Maximum Likelihood (ML)
classifier, which is one of the most widely used in pattern recognition, and that

will be later used in this thesis.

3.1.3 Linear and non-linear classifiers

Linear classifiers and non-linear classifiers are designed irrespective of any as-
sumptions on the distribution describing the training data [103]. Linear classi-
fiers use linear discriminant functions, which can be interpreted as hyperplanes
that divide the pattern space in two partitions: all points on one side of the
hyperplane are classified as yes, while the others are classified as no. Due to
this dichotomy, linear classifiers are often designed for a two-class problems.
However, there are methods to extend this type of methods for a multi-class
problem: one-vs-all, error-correcting code and single-machine approaches (see
[94] for a review and discussion of multiclass classification using binary classi-
fiers).

Examples of well-known linear algorithms include Least Square methods, the
Percepton algorithm, Linear Discriminant Analysis (LDA) (or Fisher’s linear

discriminant), Logistic Regression (LR) and Support Vector Machines (SVM).

Non-linear classifiers emerge as a necessity when dealing with problems that
are not linearly separable. One of the most popular non-linear algorithm is the
K-Nearest Neighbour classifier (K-NN) [47]. In addition, the linear classifier
algorithms listed above can be converted into non-linear algorithms operating
on a different input space, using the kernel trick.

The kernel trick consists in mapping the data into a high dimensional feature
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space, where each coordinate corresponds to one feature of the data items,
transforming the data into a set of points in an Euclidean space. In that space,
a variety of methods can be used to find relations in the data. These methods
are known as kernel methods [32] and have received a great deal of attention in
the past few years, mainly due to their capacity for solving problems involving

the classification and analysis of high-dimensional or complex data.

3.1.4 Generative and discriminative classifiers

Besides the supervised /unsupervised dichotomy, in statistical pattern recogni-
tion another dichotomy may be considered depending on the kind of information
available about the class-conditional densities. If the form of these densities is
known (e.g, multivariate Gaussian), but some parameters of the densities are
unknown, we have a parametric decision problem. On contrary, if the form
of class-conditional densities is unknown, then we operate in a nonparametric
mode [59].

In the case of supervised parametric learning of classifiers, the determination of
parameters lead us to two broad classes of methods: the generative (informative)

and the discriminative models [96].

Generative models learn the conditional density functions p(x|y) separately from
the training data and make their predictions using the Bayes rules to calculate

p(y|x). Examples of such algorithms include LDA and Naive Bayes classifier.

Discriminative models learn the posterior p(y|x) directly from the data, this
means that the class-conditional densities are not explicit modelled. This prop-
erty is one of the several compelling reasons for using discriminative rather than
generative models, as succinctly articulated by Vapnik [110]: one should solve
the classification problem directly and never solve a more general problem as an

intermediate step. This class of models include linear and logistic discrimination,
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K-NN, tree classifiers, feedforward neural networks, SVM and other kernel

methods.

It should be mentioned that the work developed along this thesis uses the
logistic regression model. As mentioned before, logistic regression learns p(y|x)
directly. It starts by assuming a parametric form for the distribution p(y|x),
then directly estimates its parameters from the training data. The form of
the distribution is conveniently chosen to lead to simple linear expressions for
classification. To classify any pattern, the rule 3.1 is applied. A common method
to estimate the model parameters is by maximum likelihood estimation. The
maximization of the log-likelihood function is generally achieved using Newton-
Raphson algorithm [55]. More details about the multinomial logistic regression

method for classification will be addressed in section 4.1.1.

3.1.5 The pattern recognition process

A pattern recognition system can be viewed as a cycle that includes several
processing steps. A popular system scheme is the one presented in [38] which is

composed of the following activities:

e Data Collection: it should be sufficiently enough to assure good perfor-
mance in the fielded system. Note that independently of the classification
or decision rule used, the performance of it depends on both the number of

available samples as well as the values of the samples.

e Feature Choice: a critical step and depends on the characteristics of the

problem domain. In this step, prior knowledge should be incorporated.

e Model Choice: there is a great number of learning algorithms that the
user should choose in this step. These algorithms can be grouped in different

class model as mentioned previously.
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e Training: is the process of using available data to build the classifier, also
referred to as learning the classifier. In this step, the algorithm chosen in

the previous step should be trained using the available training samples.

e Evaluation: the performance of the system is measured and the need for

improvements is analysed.

We have exposed the main class models to perform the learning part of a pattern
recognition system. But it should be highlighted the extreme importance of the
last step in the pattern recognition system. Recall that the goal of designing
a recognition system is to classify future test samples which are likely to differ
from the training samples used to build the classifier. Therefore, building an
excessive complex system that perfectly predict the class of training samples is
unlikely to perform well on new patterns. This situation is known as overfitting.
Instead, the system should be capable of producing good predictions in test
patterns which were not used during the training stage. This ability is referred
as the generalization performance of a learning method. The assessment of
this performance is of great importance in practice since it guides the choice of
learning method or model, and gives us a measure of the quality of the ultimately

chosen model [55].

Poor generalization ability may be caused for different reasons. Some of them
may be: (i) the small number of samples relative to the number of features
(known as curse of dimensionality to which we will refer later); (ii) the classifier
is too intensively optimized on the training set (overfitting); (iii) the number of

unknown parameters associated with the classifier is too large [59].

To assess the performance of a learning method one should have in mind that
there are two separate goals: the model selection and the model assessment. The
first goal is related with the estimation of the performance of different models

in order to choose the (approximate) best one. The latter one is related to the
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estimation of the prediction error (generalization error) on new data, when using

the final model.

The accomplishment of these two goals should not be a problem if there is
enough data to perform the train, the validation and the test tasks. In this
case, the dataset should be divided in three parts: a training set, a validation
set and a test set. The first one is used to fit the models; the second one to
estimate the prediction error for model selection and the last one to assess the
generalization error of the final chosen model. The problem is that in most
practical problems obtaining enough data to execute these three steps is not
always possible. In addition it is difficult to give a general rule on how much
training data is enough and how to choose the number of patterns in each of

the three parts.

To overcome the problem of insufficient data to split it into three parts, there
are methods that approximate the validation step either (i) analytically or (ii)
by efficient sample re-use. Examples of analytical methods are the Akaike
Information Criterion (AIC) [1], the Bayesian Information Criterion (BIC) [98],
Minimum Description Length (MDL) [95] and Vapnik’s Structural Risk Mini-
mization (SRM) [110]. These methods estimate the prediction error estimating
the optimism' and add it to the to the training error rate. However, these
methods only work for a special class of estimates that are linear in their
parameters. The second type of methods, which include the well-known cross-
validation [102] and bootstrap methods [41], are direct estimates of the extra
sample error and can be used with any loss function, and with nonlinear,
adaptative fitting techniques [55]. In this work, cross-validation techniques were

used in the validation step.

L Optimism is defined as the expected difference between the in-sample error and the training

error [55].
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3.2 Image Classification

The previous section presented the basics of pattern recognition, in particular
the classification of objects or patterns. As mentioned, in the statistical ap-
proach an object to be classified is represented as a d-dimensional vector, where
each component represents a characteristic of that object. This object, individ-
ual, or observation may be an endless spectrum of things. As an individual to
be classified we may think of a real object (a car, a chair, a clothing piece, etc),
a sound, words in a text, a person, a face, an image, etc. In this section we will
focus on the classification of specific objects, namely the pixels that compose an

image.

A digital image is a representation of a two dimensional image using numerical
values. A digital image is composed by a finite set of elements called pixels. A
pixel is a contraction of the term Plcture ELement. Digital images are made up
of small squares (the pixels), just like a tile mosaic. Pixels are very small and
so when the image is displayed on a computer monitor we do not normally see
the individual pixels. The digital image looks smooth and continuous just like a
regular photograph but it is actually composed of thousands or millions of tiny
squares as shown in figure 3.1.

To form an image, the pixels are disposed in a regular grid of a fixed number
of rows and columns. Each pixel holds a value that represents the brightness
of a given colour at any specific point of the image. Those points are spatially
identified by a pair of spatial plane coordinates. Each pixel can be referenced
via its x and y coordinates. In digital images the point of reference is usually
taken as the upper left corner, so that the x coordinate increases top-to-bottom

and the y coordinate increases left-to-right. Using this idea, the digital images
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Figure 3.1: On the left the full image, on the right the area in the red square

magnified to show individual pixels.

can be handled as a matrix:

[ 0,00 (01 ... (0c—1) |
(1,0) (L) ... (Le—1)
| (1-1,0) (1-1,1) ... (I—1,c—1)

where c¢ is the number of columns, [ the number of lines of the digital image.

The pixels values may not be a single value, depending on the number and
nature of those values, digital images may be classified as:

(i) binary images: each pixel has only two possible values and is stored as a
single bit (0 or 1);

(ii) greyscale images: each pixel carries a single value that expresses the intensity
information. This value ranges between a minimum and a maximum, where the
former is total absence (black) and the maximum is total presence (white), with
any fractional values in between;

(iii) colour images: these images are characterized for the fact that each pixel

has more than one value. Usually the pixels that compose this type of image
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are represented by a vector. A RGB (Red Green Blue) image is an example
with three dimensions, while multi-spectral and hyper-spectral images are other
examples that will be detailed forward.

Figure 3.2 shows a scheme of how a multi-band image is formed. In this example,

each image pixel is represented by a four dimension vector.

| EA [p2, P2, P2, Pl

Figure 3.2: Schematic showing how a pixel of multi-band image is formed from

the corresponding pixel values of its four components.

Image processing techniques have been developed to give solution to a wide range
of practical applications, such as medical imaging, face recognition, fingerprint
recognition, machine vision and remote sensing.

Image classification is one of many digital image processing techniques. The
intent of the classification process is to categorize all pixels in a digital image
into one of several classes (in the case of supervised learning), or create groups
of pixels based on natural groupings present in the image values (in the case of
unsupervised classification). This categorized data will result in a labelled image
which may then be used to identify image sections of interest and, depending
on the application, may be used to diagnosis, measure volumes or areas, locate

objects, etc.

Recalling the concepts and methods presented in section 3.1, each image pixel
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will be consider as the input vector x; to the classification system, and the
response 1; will be the class attributed to pixel i. The set of all pixels that
compose the digital image will be denoted as x, and y will represent the product
of the classification, the labelled image. Note that x is an array of dimension
[ X ¢ x d where | the number of lines, ¢ is the number of columns and d the

components of the image, and y is an array of [ x c.

This thesis is dedicated to image classification methods for remote sensing digital
images, namely, to images produced by multi and hyperspectral sensors. From

now on, the thesis will focus in this type of images.

Remotely sensed image pixels contain the spectral information of different ma-
terial present in the image. The dimension of the input vector z; to the clas-
sification algorithm will depend on the type of sensor that collected the image.
Hyperspectral sensors produce input vectors with higher dimension than mul-
tispectral ones (a pixel from a multispectral image has dimension of the order
of tens while the hyperspectral image pixels have dimension in the order of
hundreds). This characteristic of hyperspectral images has the advantage that
more detailed information about the material present in a pixel is available, but
on the other side, this will produce high dimensional datasets which will difficult

the classification process. This subject will be analysed in detail in section 3.4.

The final remotely sensed image classification result is a labelled image where
each pixel represents a land cover class or type. This product is frequently used
to produce thematic maps or land cover maps.

In principle, any classification algorithm should be capable of producing such
a result, this may not be possible if for example the classification algorithms
chosen is not capable of dealing with large datasets. Nevertheless, if traditional
classification algorithms are applied to the image pixels, what frequently hap-

pens is that the final labelled image do not present an homogeneous aspect of



3.3. MULTISPECTRAL REMOTE SENSING IMAGE CLASSIFICATION37

the land cover distribution: the image classified has a pizelised aspect. This
happens because the algorithm only has into account the spectral information
of each individual pixel. When we look to an image and try to classify some
objects there, we subconsciously know that adjacent pixels are more likely to
have the same class. What we are doing is to include spatial information in our
own classification process. This is not considered in the traditional pixel-based
classification. In order to introduce the information of neighbouring pixel in
the classification process, some methods have been developed recently. This
information is very important but until a few years ago it was rarely considered

in the remote sensing field. This matter will be addressed latter in this chapter.

3.3 Multispectral Remote Sensing Image Classifica-

tion

In a multispectral image, a pixel represents the spectral signature (measured in
a limited set of bands of the electromagnetic spectrum) of the materials present
in the area captured by that pixel. Figure 3.3 shows the response of a pixel in
a given spectral band. The dimension of the input vector will be then equal to
the number of selected spectral bands of the sensor that captured the image.
Some bands may be discarded by the user if for instance they are noisy bands,
or have redundant information. These will be the input features used in the
classification algorithm. The final product will be a labelled image where each
pixel represents a single land cover class type. Figure 3.4 presents an example
of a thematic map produced by the classification of a multispectral image of
an agricultural area. The production of thematic-maps has a wide range of
applications such as geological, agricultural, forestry, ecology, urban and land

use applications.

Throughout the years, different types of classification algorithms have been
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Figure 3.3: The multispectral concept: the signal from a pixel expressed as a

graph of response vs. spectral band (figure from [69]).

applied to multispectral images, both with supervised and unsupervised ap-
proaches. However, the most commonly used is the supervised approach. Recall
that in supervised algorithms the classes are defined a priori by the user, and
then, each image pixel is associated with one of those classes. In unsupervised
classification there is no prior information about the land cover classes searched
for, and the image pixels are grouped accordingly with their spectral similarity.
This will produce clusters that only roughly match some of the actual land cover

classes.

Classification algorithms like the Maximum Likelihood, Minimum Distance,
Parallelepiped, K-NN and LDA are among the most widely used algorithms
in supervised classification. Their popularity is mainly due their simplicity
and because almost every image processing software has them available. These
algorithms are, being used as a reference to evaluate other classification methods,

as reported for example in [11, 2, 97, 23, 118, 12]. Unsupervised algorithms
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Figure 3.4: A thematic map of an agricultural area created from Thematic

Mapper multispectral data (figure from [69]).

frequently used are the K-Means, ISODATA, and hierarchical clustering. In [39]
some examples of unsupervised classification methods applied to multi-spectral
images are presented. Neural Networks methods are also widely used among
the remote sensing community [11, 2, 99] and new developments based on the
traditional NN and directioned to the classification of remotely sensed images

have been presented [97].

All these algorithms work on a pixel-based classification and for that reason
reveal the problem identified previously: they do not include spatial neighbour-
hood information. This lack of information will result on thematic maps with
‘spots’, i.e., isolated pixels of a given class will appear in a zone of another class.
Observe for example the yellow square in the top right of the thematic map in
figure 3.4. That area corresponds to a corn area, however, there are some isolated
pixels in the middle of the square identified as forest. If this thematic map were
made by a human, all the square would be classified as corn and the limits of each
different region of land cover type would be smoother because of our real world
perception. To avoid this type of problems, new algorithms were developed
to include this information. These algorithms include spatial information in
several ways: texture, shapes and neighbouring pixels spectral information [35].

This subject will be addressed later, in section 3.5. Comparisons between
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pixel-based algorithms and object-based algorithms are available in recent works
[23, 118, 11]. Other examples of object oriented classification of multispectral

images may be found in [78, 106, 79, 82, 4, 88|.

Recently developments in classification algorithms have been made related to
methods that mixture the ideas of supervised and unsupervised classification
algorithms, and sparse algorithms. Both developments intend to improve the
classifiers response to the problem of the curse of dimensionality: learn a clas-
sifier in a high-dimensional feature space with a small number of data samples

(we will refer to this problem next section).

The first subject reflects the idea of making use of both labelled and unlabeled
data for training - typically a small amount of labelled data with a large amount
of unlabeled data. There are two approaches to this technique: the semi-
supervised learning [121], and transductive learning (see [110] pp. 339-371).
The importance of this technique is related to the cost of having enough labelled
training samples to perform the classification task in a remotely sensed image.

Several works used this techniques with good results [85, 76, 21, 30].

Support Vector Machines (SVM) are probably the most popular sparse classifier
in remote sensing. Sparse classifiers are charactherized for setting automatically
to zero irrelevant /redundant parameters. The advantage of sparse classifiers is
therefore obvious: it will lead to a structural simplification of the estimated func-
tion. Moreover, it will improve the generalization performance of the classifier.
In remote sensing classification, where problems related with curse of dimen-
sionality are common, this type of method proved to work well [78, 76, 21, 12].
Sparse classification algorithms include not only SVMs, this family of algorithms
include also the Relevance Vector Machine [105], the Sparse Probit Regression
[45, 43|, sparse online Gaussian processes [34], the Informative Vector Machine

[71] and the Joint Classifier and Feature Optimization algorithm [67, 68]. These
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algorithms are considered to be among the current state-of-the art in supervised

learning [45, 43, 66].

3.4 Hyperspectral Remote Sensing Image Classifica-

tion

Hyperspectral data provide the capability to discriminate among nearly any
set of classes, expanding and improving the capability of multispectral image
analysis. Hyperspectral imaging take advantage of hundreds of contiguous
spectral channels to capture more subtle details of spectral response of ob-
jects on the ground that usually cannot be resolved by multispectral sensors.
Hyperspectral imaging has therefore expanded the capability of multispectral
imaging in numerous applications in agriculture, ecology, geology, environmental
monitoring, military intelligence, law enforcement, and chemical and biological
defence. However, this advantage also comes with a price, namely, the knowledge
needed to effectively use the spectral information resulting from these hundreds

of bands to perform various tasks in data exploitation.

In section 2.2 the main difference between hyperspectral and multispectral
sensors where shown to rely on the number of bands captured for each sensor.
Figure 3.5 illustrates the type of image produced and the information made
available for each type of sensor. As one can observe, it is obvious the increment
of information introduced by an hyperspectral sensor. As mentioned before,
there is an increase in the spectral information available for each pixel, but
this also increases the amount of data to process, resulting in high dimensional

datasets.

It is not straightforward which type of image will produce the best final result in

a classification task. This happens mainly because the lack of hyperspectral and
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multispectral datasets collected simultaneously over the same area. Moreover,
the type of classification algorithm applied to hyperspectral datasets usually
differ from those applied to multispectral datasets which turns the comparison
between these two types of datasets not feasible. Even so, there are some
works where hyperspectral and multispectral images are used with the same
goal and are then compared [116, 52, 6, 63]. It may be said however that it is
consensual that, as a relatively new analytical technique, the full potential of
hyperspectral imaging has not yet been discovered, and therefore the comparison

with traditional multispectral imaging is not complete.

Figure 3.5: An illustration of the structure of multispectral images (right), and

hyperspectral images (left).

In the past few years, due to the increase of spectral resolution brought by
hyperspectral images, two image processing areas have been suffering great
developments: the subpixel detection and mixed pixel classification algorithms.
These new developments are due to the challenges brought by three factors:

(i) the presence of pure pixels is very improbable in an image scene (a pixel usu-

ally contain two or more material substances) which leaded to new to unmixing
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algorithms [86, 87, 24];

(ii) that the signal sources provided by these images may include targets with size
smaller than the ground truth sampling distance (they are generally embebed
in a single pixel and cannot be visualized by visual inspection), leading to
improvements on sub-pixel classification algorithms;

(iii) the sensor characteristics are not ideal which means that the signal recorded
for a pixel is in fact obtained from a point spread function, resulting in a mixture
of signal from the pixel itself and its neighbours.

More detailed information on these matters may be found in [28].

One of the major problems in statistical learning algorithms is related to the
well-known Hughes phenomena [58]. The Hughes phenomena, or curse of di-
mensionality [5], refers to the exponential growth of hypervolume as a function
of dimensionality. In statistics it relates to the fact that the convergence of
any estimator to the true value of a smooth function defined on a space of
high dimension is very slow. In terms of supervised classification algorithms,
this means that, a priori, we need an enormous amount of training samples
to obtain a good estimate of classifier. This of course is a major problem in
hyperspectral remote sensing applications since the ratio between the number

of training samples available and the number of features is frequently small.

To deal with the Hughes phenomena, one can identify three approaches: (i)
reduce the data dimensionality, (ii) choose simpler models, or (iii) use unlabelled
data to learn the classifier (semi-supervised learning). Initially the most common
choice reported in the literature is probably the first one, which indirectly
reduces the number of parameters to be estimated. Several feature reduction
algorithms have been applied to the supervised classification of hyperspectral
images. Some examples may be found in [16, 88]. However, as can be seen
from a result in [31] reducing data dimensionality may lead to a more com-

plex classification problem. More recently new methods have been developed
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to produce simpler models, namely the discriminative approaches which are
able to produce sparse solutions, like we previously saw in section 3.1. These
approaches hold the state-of-the art in hyperspectral supervised learning due
to their capacity of dealing with small class distances, high dimensionality,
and limited training samples. The SVMs are one of the most consolidated
discriminative supervised classification tools and have been successfully used
for hyperspectral data classification. Examples of the application of sparse
classifiers to hyperspectral datasets may be found in [3, 26, 42, 119]. From
recent results reported in the scientific literature, one may say that, generally,
the second approach is gaining adepts since it produces better resuls in terms
of generalization, accuracy and computational economy when dealing with high
dimensional datasets. A comparison between these two approaches may be

found in [8].

The method developed in this thesis relies on the approach of reducing the
classifier complexity trough the inclusion of conditions (priors) that produce
sparse classifiers. This will be addressed in detail in section 4.1. Examples
of semi-supervised and transductive learning applied to hyperspectral datasets
may be found in works recently published [25, 22].

Although many progresses have been made to successfully deal with the Hughes
phenomena in hyperspectral imaging, it is still an active area of research, which

should see many developments in the coming years.

3.5 The introduction of spatial context

Common and traditional classification algorithms treat each pixel in an image
as spatially independent. In remote sensing applications this usually produces
thematic maps unlikely to form a patch-like and easily interpretable pattern.

This problem has already been introduced in section 3.3, where the figure 3.4
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exemplifies the problems related to the result of a pixel-based classification.
Better classification outcomes can be achieved if the pixel’s spatial context is

introduced in the process.

In remotely sensed imagery, there are factors that cause neighbouring pixels
to exhibit some level of mutual characteristics. Examples of such factors can
be atmospheric interaction, the spatial and spectral resolution of a sensor, and
the mechanism of the pixel being generated. Also, when mapping the pixels to
landscape patterns, if a pixel is identified as water, it will be most likely that
the surrounding pixels have the same class. The classification accuracy can be

improved if such spatial interaction is well modelled [107].

Image segmentation is an important problem in image analysis, appearing in
many applications including pattern recognition, object detection, and medical
imaging. This subject has been one of the most studied problems in computer
vision. Image segmentation may be shortly defined has a process in which image
elements representing the same tissue class are grouped together and labelled
[20]. The goal of segmentation is to simplify and/or change the representation
of an image into something that is more meaningful and easier to analyze. More
precisely, image segmentation is the process of assigning a label to every pixel in
an image such that pixels with the same label share certain visual characteristics.
Fach of the pixels in a region are similar with respect to some characteristic or
computed property, such as colour, intensity, or texture. Adjacent regions are

significantly different with respect to the same characteristic.

In remote sensing, the terms classification and segmentation are often used to
refer to the same process. However, it is important to distinguish these two
methods. In this work, classification refers to the process of assigning a class to
a pixel based only on its spectral signature. Segmentation is the process where

the spatial context of each pixel (it dependency to neighbouring pixels) is added
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to the spectral information, improving the results of classification.

In the past couple of decades, many different approaches, formulations and tools
have been proposed in computer vision. Two research paths can be used to
classify image segmentation works [44]: (i) development of image features, and
feature models, as relevant and informative as possible for segmentation goal;
and (ii) development of methods that enforce some form of spatial regularity to
the segmentation, i.e., that integrate local cues (from features) into a globally

coherent segmentation.

There are several examples of developments in both research paths. First some
concepts with respect to the first path are introduced.

With the intention of simulate the human image segmentation, some recent
proposals combine intensity, texture, and contour-based features [80]. Meth-
ods based on pixels intensity have been developed using morphological profiles
[7, 91, 42, 82]. Opening and closing morphological transforms are used in
order to isolate bright (opening) and dark (closing) structures in images, where
bright /dark means brighter /darker than the surrounding features in the images.
A different approach uses the multiscale structure built by a specific algorithm to
measure and incorporate various properties such as intensity contrast, isotropic
texture, and boundary integrity [100].

In remote sensing, a popular type of segmentation is the object-based seg-
mentation. This type of segmentation is easily available in some commercial
software (e.g. Definiens, ENVI, ERDAS). It uses a hierarquical scheme starting
with one-pixel objects and in numerous subsequent steps, smaller image objects
are merged into bigger ones. Throughout the segmentation procedure, the
whole image is segmented and image objects are generated based upon several
adjustable criteria of homogeneity or heterogeneity in colour and shape. Some
examples of hierarquical segmentation may be found in [23, 118, 78, 106, 79].

Segmentation algorithms based on texture are also frequently used. Literature
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in texture features and models is quite vast. A recent survey over this subject is
presented in [93]. Nevertheless, some of the classical examples of texture-based
algorithms can be listed here: Garbor features [60]; wavelet based features [108];
co-occurence matrix [54] and features derived from MRF local texture model
[33, 37]. Some examples of the application of these algorithms may be found in
[11, 106]. Nonparametric statistical measures of texture similarity may be also

used to perform segmentation by resorting to pairwise clustering techniques [57].

In respect to the second research path, there are also various approaches that
enforce some form of spatial coherence. Graph-based segmentation methods
treat image segmentation as a graph partitioning problem and use a given
criterion for segmenting the graph [101, 112, 115].

A segmentation algorithm considers a given class of image partitions. Spatial
regularity may also be achieved by constraining these classes. For example,
while [56] presents an image segmentation algorithm which represents images
by polygonal segments, [89] considers quad-tree-like partitions. Another form
of achieving spatial coherence is by imposing some prior on the length or the
smoothness of the region boundaries [120]. Some recent works may be found in
[62] and references therein. In a probabilistic Bayesian approach, Markov Ran-
dom Field (MRF) theory allows some form of spatial coherence by incorporating

a MRF prior [73].

The work developed in this thesis uses the MRF theory to enforce spatial
dependencies, more specifically, it uses a Multi-Level (MLL) Markov-Gibbs prior
which will be detailed in section 4.2. To give an idea of MRF theory, one may
say that MRF theory is a branch of probability theory used to analyse the
spatial or contextual dependencies of physical phenomena. It is frequently used
in visual labelling to establish probabilistic distributions of interacting labels
since it provides a convenient and consistent way to model context-dependent

entities such as image pixels and correlated features. This is accomplished by
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defining interactions between neighbouring pixels and building structures using
such local interactions. From a computational viewpoint, these local structures
allow analysis that are limited to pixels involving sites and their neighbours,
and can be performed in parallel.

The use of MRF in hyperspectral image segmentation has been increasingly used

in recent years. Some examples of such application can be found in [119, 88].

The basic concepts of pattern recognition and remote sensing were introduced in

these first chapters. The following chapters present the original work developed.



Chapter 4

Methodology Developed

This chapter presents the theoretical basis and the methods developed in this
work. An introduction to the Sparse Multinomial Logistic Regression (SMLR)
method is given, a sparse method to classify high dimensional datasets. Nev-
ertheless it was observed that the direct application to hyperspectral images
conducted to computational problems due the very high dimensionality of this
type of classification problem. This application difficulty lead to the develop-
ment of a new approach to the SMLR, the Fast-SMLR. This method is explained
in section 4.1.2. Two priors are considered in this problem: the Laplacian and

the Jeffreys prior.

The addition of spatial information results in a new bayesian segmentation
method. This information is added by means of a MLL Markov Gibd prior
which is described in detail in section 4.2. Section 4.3 presents the method used

to estimate the optimal segmentation.

49
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4.1 The Fast Sparse Multinomial Logistic Regression
method

This section introduces the FSMLR classification method adopting two different
priors: Laplacian and Jeffreys. The FSMLR is based in the Multinomial Logistic
Regression models, and promotes the sparseness of the classifier using a sparsity
promoting prior. First the SMLR proposed by Krishnapuram et. al [66] is
reviewed, then two priors are introduced. Finally the Fast implementation is

presented.

4.1.1 The Sparse Multinomial Logistic Regression method

The SMLR algorithm learns a multi-class classifier based on the multinomial
logistic regression. By incorporating a prior, this method performs simultane-
ously feature selection, to identify a small subset of the most relevant features,

and learns the classifier itself.

Let us start first with a review on the multinomial logistic regression theory,

and then the priors theory will be introduced.

The logistic regression model arises from the desire to model the posterior
probabilities of the K classes via linear functions in @, while at the same time
ensuring that they sum to one and remain in the range [0, 1] [55].

Let © = [z1,... ,xd]T € R? be the d observed features. The goal is to assign
to each x the probability of belonging to each of the K classes, given K sets
of feature weights, one for each class. In particular, if y = [y, ...y is
a 1-of-K encoding vector of the K classes, such that y*) = 1 if  corresponds

to an example belonging to class k and y*) = 0 otherwise; and if w®) is the

feature weight vector associated with class k, then the probability that a given
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sample x; belongs to class k is given by

exp (w(k)T:L'O
) — 1l ap) —
P (y = 1l w) B Zszl exp (w®)" a;) (4.1)

fork e {1,..., K}, where w = [w(l)T, cee w(K)T]T and the superscript 7 denotes

the vector transpose. For binary problems (K = 2) this is known as a logistic
(linear) regression model; for K > 2 it is known as multinomial logistic (linear)

regression.

The model is specified in terms of K — 1 log-odds or logit transformations
(reflecting the constraint that the probabilities sum to one). For this reason, the
weight vector for one of the classes need not to be estimated because we have
that:

exp (w)' ;)

St exp (wh) )

P(y(k)zl\a:i,w>: , ke{l,..., K -1}

and consequently:

1
P(y(K)zlazi,w>: .
| S exp (w®) ;)
Without loss of generality, w¥) is set to zero, and the only parameters to be
learned are the weight vectors w®) for k € {1,..., K — 1}. From now on, w will

denote the (d(K — 1))-dimensional vector of parameters to be learned.

To extend the linear logistic model to include non-linear transformations of the

input features, a function h(zx) is introduced in equation 4.1:

ex w(k)Th( )
P (y(k) - 1“”““’) - Zgj eg(p (mmTZZi)) (42

where h(z) = [h1(x),...,h(x)]T is a vector of I fixed functions of the input,

often termed features.

Possible choices for h(x) function are:



52 CHAPTER 4. METHODOLOGY DEVELOPED

e linear: h(xz;) = [1,zi1,... ,x@d]T, where x; ; is the 4t component of z;, in

which case w is a (d 4+ 1) dimensional vector;

e non-linear: h(z) = [1,¢1(x),..., ¢k (x)]T, where ¢;(-) are nonlinear func-

tions. In this case, the dimensionality of w is K + 1;

e kernel: h(z) = [1,K(z,21),...,K(z,2,)]", where K(-,-) is some symmetric

kernel function [32]. Here, the dimensionaliy of wis n + 1.

Kernels are nonlinear mappings, thus ensuring that the transformed samples are
more likely to be linearly separable. A popular kernel used in image classification

is the Gaussian Radial Basis Function (RBF): K(x,z) = — exp(||x — z||* /202).

In a supervised learning context, the components of w are estimated from the
training data D = {(x1,y;), ..., (€n, y,,) }. Usually, this estimation is done using
a maximum likelihood (ML) procedure to obtain the components of w from the

training data, simply by maximizing the log-likelihood function [55]:

(w) = logP (y;|z;, w)

=1
n K K
= Z Z ygk)w(k)Ta;i — log Z exp <w(k)Twi)] (4.3)
i=1 Lk=1 k=1

The ML estimate for w can be determined using various algorithms like Newton’s
method, coordinate ascent, conjugate gradient ascent, fixed-Hessian Newton
method, quasi-Newton, dual optimization or iterative scaling (see [83] and ref-
erences therein). Nevertheless, the most widely used method is the Newton’s
method also known as Iteratively Reweighted Least Squares (IRLS) method
since there is no other that clearly outperforms IRLS [83]. However, the log-
likelihood function (eq.4.3) can be made arbitrarily large when the training data

is separable. For this reason it is crucial the introduction of a prior on w.

A sparsity promoting prior on the entries of w is then incorporated, in order to

achieve sparsity in the estimate of w.
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A sparse estimate for w corresponds to an estimate in which irrelevant or
redundant components are exactly zero. The sparseness property of a classifier
is desirable for several reasons, namely because (%) it leads to a structural sim-
plification of the estimated function and (77) it often increases the generalization
performance, namely when kernel classifiers are used [32, 110]. Moreover, in a
sparse classifier, only a subset of the training data has to be kept. This charac-
teristic is therefore of extreme importance when large datasets are considered,

as is the case of hyperspectral images.

With the inclusion of a prior over w, a maximum a posteriori (MAP) is used
instead of typical ML criterion for multinomial logistic regression. The estimates

of w are then given by:
Wy ap = arg max L(w) = arg max [[(w) + log p(w)] (4.4)
w w
where p(w) is a prior on w.

A common way to achieve sparse estimates is by adopting a zero-mean Laplacian
(rather than Gaussian) prior on w. The Laplacian prior has been widely used as
it’s capacity to produce sparseness solutions are well-known, and thus has been
exploited in several research areas [27, 29, 72, 104, 114]. The sparsity of this
prior is achieved due the presence of the [ penalty, which sets some components

of w to zero [104].
The Laplacian prior on w has the form:
p(w) o< exp(=Awl|) (4.5)

where ||w||; = ), w; denotes the I; norm and A acts as a tunable regularization

parameter.

However, the use of this prior enforces the setting of the A parameter that
controls the degree of sparseness of the obtained estimates. The process of

selecting/estimating the optimum X is usually done by cross-validation through
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the training process. In the case of high dimensional datasets, such as hyper-
spectral images, this search often becomes a time consuming task and do not

optimally utilize the available data.

In order to overcame this disadvantage of the Laplacian prior, a parameter-
free prior is introduced in the estimation of class densities: the Jeffreys prior
[9]. The Jeffreys prior is a non-informative prior that expresses the notion of

ignorance/invariance with respect to changes in measurement scale [9, 46].

Using the Jeffreys prior, p(w) is given by

p(w) o< 1/]jwll, (4.6)

which is a parameter-free prior, having no longer a sparsity parameter to tune.
As will be seen in the experimental tests, this prior will also produce sparse

solutions

Considering the adoption of these two priors, the following subsections describe

how the estimation of the weights w is done in each case.

4.1.1.1 SMLR with Laplacian prior

The inclusion of a Laplacian prior does not allow for the use of the classical
IRLS method to solve the maximization problem in equation 4.4. The bound
optimization framework supplies a tool to tackle this optimization problem.
The central concept in bound optimization is the iterative replacement of the
function to be optimized, in this case L(w) = I(w) + log p(w), with a surrogate

function @ [70], such that,
L(w™D) > L(w®) (4.7)

and

w1 = arg max Q(w|w™®). (4.8)
w
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Conditon 4.7 is acomplished if the surrogate function satifies the key condition
that L(w) — Q(w|@w'") attains its minimum at w = @w®. With this condition,

it is shown that L(w) is increased during the process:

L(w™)

3
!
o
3
B
+
o
3
Bl

w'")) (4.9)

A surrogate function that satisfies the key condition can often be achieved by
purely analytical methods. Since I(w) is concave and C?, its surrogate function,
Q(w|w') can be determined using a bound on its Hessian H [13]. Let B be
a negative definite matrix such that H(w) — B is positive semi-definite, i.e.,

H(w) > B for any w. A valid surrogate function is

Q(w|w®) = w’ (g(fv(t)) - B'&J(t)> + %wTBw, (4.10)
where
1 S
— T T
B=—3 [I-11"/K] ® §'_1 T (4.11)

where ® is the Kronecker matriz product and 1 = [1,1,...,1]7, g(w) is the

gradient of [(w) given by

S
g(w) = (¥ — pi(w)) @ m;, (4.12)

=1

T T
with y, = yl.(l),y?), e ,y(Kfl)} and p;(w) = [pgl)(w), . ,pEKil)(w) .

1

Concerning the Iy norm |w||;1 = >, |wgl, it is worth noting that, for a given
(t)

Wy~

— g > —1/2w}/|w| + ¢, (4.13)
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where ct®

is a constant. Thus, both terms of L(w) have a quadratic bound.
Since the sum of functions is lower bounded by the sum of the correspondent

lower bounds, there is a quadratic bound for L(w), given by

Q(w|w'!) = w’ (g('fu(t)) — B'fu(t)> + %wTB'w—i— %wTA(t)w'w (4.14)
where
A® — diag { ‘ﬁ;@‘*l _— w%{_l)‘l} . (4.15)
The maximization of (4.14) leads to
@) = (B — AA®)1 (Bw<t> . g(ﬁ)(t))) . (4.16)

Numerically, Eq.4.16 is equivalent to solve [66]:
-1
@D = p® (F(t)BF(t) - )\I) r® (Bw<t> - g(w@))) , (4.17)

where

r® — diag{‘ﬁ)gt)‘l/z e

@ )| } (4.18)

Equation 4.17 is set to this form to avoid inverse weight estimates, because some

of them are expected to be zero.

It is now possible to perform exact MAP multinomial logistic regression under
a Laplacian prior, with the same cost as the original IRLS algorithm for ML
estimation (see [92]). However, an important issue remains - the adjustment of
the sparseness parameter A in Eq.4.17. This should be done by cross-validation,
which may result in a time consuming task. To avoid this, we adopt a Jeffreys
prior on the weights. The next section describes how the ML multinomial logistic

regression is performed with this prior.

4.1.1.2 SMLR with Jeffreys prior

The use of a Jeffreys prior removes the sparseness parameter A from the model,

since it is a parameter-free prior. As will be shown experimentally, this prior
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strongly induces sparseness and yields state-of-the-art performance in image

segmentation.

The Jeffreys prior is a heavy-tailed non-informative prior which has been used
in several processing applications (like classification, regression [43] and image
deconvolution [10]) to produce sparse solutions and avoid the search for the

parameter that controls sparsity of the algorithms.

Here it will be shown how the bound optimization algorithm presented in pre-
vious section is applied when the Jeffreys prior is introduced. When using the
Jeffreys prior, minor changes are required in the estimation of the weights w

described previously for the Laplacian prior.

In this case, the function to be optimized is
L(w) = l(w) — log(||wl[,),

instead of

L(w) = l(w) = Ajw]]; .

In this way, the surrogate function for I(w), Q(w|@w®) (eq.4.10) is kept, and also
the inequality 4.13 remains valid. Consequently both terms of L(w) continue to
have a quadratic bound given by equation 4.14. However, the introduction of

the Jeffreys prior conducts to a new matrix A®). This matrix is now given by

-2
. L (t
A® _dlag{‘wg)’ Yy

OIS
@ )| } . (4.19)

The removal of the sparseness parameter from the iterative equation 4.17 is

other modification.

The maximization of (4.19) leads now to the iteration equation:

B = (B — AD)1 (Bw(t) _ g(u;(t))) ’ (4.20)
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which numerically is equivalent to solving:
-1
DD = p® <F(t)BF(t) - I) ) (Bw@ - g(w@))) : (4.21)

similarly to what was done in the previous section. Here 'V is given by

w?)),...,

r'® — diag {

(0
@)} (4.22)

We now have two linear systems to solve, one for Laplacian prior (eq. 4.17) and

another one for Jeffreys prior (eq. 4.21), to determine the w estimates.

4.1.2 The iterative modification to SMLR

Independently of the prior used, the update equations include a non-constant
matrix (F(t)BF(t) -1 ), that need to be inverted at each iteration. This process
leads to a high computational cost when solving the linear system in (4.17)
and (4.21) at each iteration, which becomes often prohibitive. The cost at each
iteration is of the order of ((dK)3), turning the application of SMLR to large
datasets very difficult, either because the original number of features is very
large, or because a very large training dataset is used. In the case of hyper-
spectral image segmentation, the problem is the number of bands (d), which is

usually very large.

In order to circumvent this problem, a modification to the iterative method
used in SMLR is introduced. This modification results in a faster and more
efficient algorithm: the Fast-SMLR (FSMLR) [14]. FSMLR uses the Block
Gauss-Seidel (GS) method [92] to solve the system used in the IRLS method.
The modification consists, at each iteration, in solving blocks corresponding to
the weights belonging to the same class, instead of computing the complete set

of weights.

The system to be solved in the case of Laplacian prior is presented in equation

4.16. When the Jeffreys prior is considered, the rationale is equivalent but
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without the parameter A and the matrix A, and is given by expression 4.19

instead of expression 4.15. So only the Laplacian prior will be explained here.

If one considers the update equation given in Eq.4.16, and proceed to some

algebric modifications, one has:

S (B _ AA(t))” (Bw@) _ g(w(w))
= (B . AA“)) Dt = (Bw(” - g(ﬁ)(t)))
= A® (A(t)_lB - AI) Dt = (Bw(t) - g(ﬁ)(t))>

= (A(”“B - AI) ) = AO7 (Bw(t) - g(w“))) (4.23)

Recall that A® 7" is a diagonal matrix, where each block k corresponds to the
weights of that class and has size d x d, so, A" has dimension (d (K — 1)) x
(d* (K —1)). Matrix B (eq. 4.11) has dimension (d % (K — 1)) x (d* (K — 1))
and it can be decomposed as a block matrix, were each block corresponds to a

class:

Bii ... Bikg-

Bg_11 ... Br-1Kx-1
where By, j, corresponds to the block correspondent to class & and is of dimension

d x d. In addition, if we set
y = AO7! (Bwa) _ g(wm))
and W the matrix of class weights to be updated at each iteration such as

w1

WK—1
where wy, is the block corresponding to the weights of class k, we have that

solving the linear systems in (4.17) with the block GS iterative procedure, with
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the blocks coinciding with the class weights is equivalent to solve:

UAjgt)‘ Bl,l . Bl,K—l w1
— A
1@?_1‘ Bg_11 ... Bg_1Kx-1 WK -1
Y1
YK-1

Writing this set of linear systems in a simpler way, we have

Aig .. Ak w1y Y1

Ag—11 . Ax_1Kk-1 WK1 YK -1

This means that in each iteration we solve the following system for each block

k

Appwr = yp — Y A pwi, (4.24)
ik

where matrix A is a block diagonal matrix resulting from ADOT B AL

Using this technique, what happens is that, at each iteration, K systems of equal
dimension to the number of samples are solved. This results in an improvement

in terms of computational effort of the order of (K?).

4.2 The inclusion of contextual information

The application of FSMLR with a Laplacian or a Jeffreys prior enforces sparsity
in the estimation of class densities, providing a competitive method for the
classification of hyperspectral images. However, this can be improved by adding

information about the neighbourhood of each pixel. The inclusion of contextual
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information together with the spectral information will model the piecewise
smoothness of real world images. The addition of the contextual information
will result in a label image with a finite set of nonoverlapping homogeneous

regions. This process is known as segmentation.

The goal of segmentation is to estimate the label image having observed the
feature images. Let us represent the observed hyper-dimensional images (the
feature images) as x = {CILL €eERYieS }, where d is the number of spectral bands
and S the total number of pixels of the scene considered. The goal is to assign
to each x;,i € S, alabel y; € £L ={1,2,..., K}, resulting in an image of labels
Y = {¥itics-

In a Bayesian framework, the estimation of y having observed x is done by

maximizing the posterior distribution

p(y[x) o< p(x]y)p(y) (4.25)

where p(x]y) is the likelihood function (or the probability of feature image given

the labels) and p(y) is the prior over the classes.

To determinate the likelihood function, the FSMLR is adopted to learn the
densities of labels. The likelihood is given by p(xi|y;) = p(y;|zi)p(xi)/p(y;)-
The class densities p(y;|x;) are learned by the discriminative classifier presented
in the previous section, the FSMLR. In addition, since p(z;) does not depend

on the labeling y, we have

p(x[y) Hp(yi|$i)/p(yi)7 (4.26)

€S
where conditional independence is understood. Also, in this approach, the
classes are assumed as likely probable: p(y;) = 1/K . Although this assumption
may not be the ideal, it still leads to very good results. The class densities can
be tilted, if required, towards other distribution by using the method described
in [81].
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Assuming the Bayesian model given in expression 4.25, it is possible to introduce

the contextual information by modelling the prior over classes p(y).

MRF models allow one to incorporate contextual constraints in a principled
manner. The MLL prior is a MRF that models the piecewise continuous nature
of the image elements, considering that adjacent pixels are likely to belong to
the same class. This prior is a generalization of the Ising model [50] and has

been widely used in image segmentation problems [73].

The Hammersly-Clifford theorem is a key theoretical result that provides a
method to write the density of a MRF. To define that density, some definitions

are required first.

Let us define 0s as the neighbourhood of pixel s. This neighbourhood system
should be symmetric r € ds = s € Or also s ¢ 0s. A clique is a set of
pixels, ¢, that are neighbours of one another: Vs,r € ¢,r € ds . The cliques
can have several forms and number of pixels, depending on the neighbourhood
order considered (Figure 4.1). Figure 4.1a presents different orders of neigh-
bourhood (the numbers indicate the outermost neighbouring sites in the nt"
order neighbourhood system). In this work, 2nd order neighbourhoods will be

considered.

Q DIE FJLT

U8 | o | Qb | = | T
-0 I O O Y I -
W e | | e |
-0 I O O Y I -
U8 | o | Qb | = | T

a) Neighbourhood sys- b) Clique types for the 2"¢ order neighbourhood
g Y y g

tems

Figure 4.1: Neighbourhood systems and 2"? order neighbourhood cliques (figure
adapted from [73])
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According to the Hammersly-Clifford theorem, the density associated with a
MRF is a Gibb’s distribution [50]. Therefore, the prior model for segmentation

has the structure

p(y) = %eXp <— > VC(Y)> ) (4.27)

ceC

where Z is the normalizing constant for the density and the sum in the exponent
is over the prior potentials V.(y) for the set of cliques C over the image. The

> ccc Ve(y) is known as energy function, and the potential is of the form:

ay, if |cf=1 (single clique)
_V;i(y') = Be if |C| >1 and vi,jec Yi = Yj (428)

—Be if el >1 and 3;jecyi # yj

where 3. is a non-negative constant.

The definition of the potencial function in 4.28 encourages neighbours to have
the same label. By varying the set of cliques and the parameters a,, and (.,
MLL offers a great deal of flexibility. For example, the model generates texture-

like regions if 8. depends on ¢ and blob-like regions otherwise.

Equation (4.27) can be written as

p(y) = %eﬁ"(y) (4.29)

where n(y) denotes the number of cliques having the same label, if we let o, = «
and G, = %ﬂ > 0. This choice gives no preference to any label nor to any

direction.

The conditional probability p(y; = k|y;,j € S — i) is then given by

S’ (4.30)

p(yi = klyn;) =

where n;(k) is the number of sites in the neighbourhood of site 7, ;, having the

label k.
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We have now a powerful mechanism for modelling spatial continuity, by using the
neighbourhood information in the MLL prior. The next step is the parameter
estimation problem. The answer to this is given by a MAP optimization problem

which will be addressed in the next section.

4.3 MAP segmentation

After learning the class densities p(x|y) o [[; p(vi|zi) with FSMLR and mod-
elling the prior over classes p(y) by a MLL prior, one has a MAP segmentation
problem, given by

y = argmaxp(x|y)p(y)
= argmax » logp(zi|y:) + Bn(y)
Y s
= argmin Y _—logp(zily:) — B Y 8(yi — vj), (4.31)
Y €S i,JEC

where § is the unit impulse function. The minimization of (4.31) is a hard
combinatorial optimization problem. The combinatorial nature of this optimiza-
tion problem limits the number of algorithms available to achieve the optimum

solution.

The function to be minimized can be viewed as an energy function where the
first term penalizes the solutions that are inconsistent with the observed data
and the second term enforces some kind of spatial coherence. Efficient energy
minimization algorithms have been recently developed to tackle this kind of
problem. Examples of those developments are based in optimization methods
like Graph Cuts [19], Loopy Belief Propagation [117, 111] and tree-reweighted

message passing [65].

Graph cut techniques from combinatorial optimization can be used to find the

global minimum for some multi-dimensional energy functions. Two algorithms
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that use the graph cuts technique to compute local minimum are proposed in
[19]. The swap move algorithm and the expansion move algorithm are the
most popular graph cuts algorithms. These algorithms rapidly compute a local
minimum, in the sense that no 'permitted move’ will produce a labelling with

lower energy.

The swap move takes some subset of the pixels currently given the label o and
assigns them the label 3, and vice-versa, given a pair of labels @ and 3. The
swap move algorithm finds a local minimum such that there is no swap move,
for any pair of labels a, § that will produce a lower energy labelling. The
expansion move for a label « increases the set of pixels that are given this label.
The expansion move algorithm finds a local minimum such that no expansion

move, for any label «, yields a label with lower energy.

These algorithms guarantee the identification of the optimal labelling if the
energy function is equivalent to a semi-metric in the swap, and metric in the

expansion algorithm [64].

It can be shown that the pairwise interaction term on the right hand side of
(4.31) is equivalent to a metric. The metric is obtained by simply adding /3 to
terms — 3 (y; —y;). This equivalence lead us to apply the a-Expansion algorithm

since it guarantees very good approximations [19].

The combinatorial optimization literature provides several min-cut/max-flow
algorithms on graphs as a useful tool for exact or approximate energy minimiza-
tion. The a-Expansion algorithm makes use of a min-cut/max-flow algorithm
presented by [18], by iteratively running this algorithm in appropriate graphs.
Boykov’s min-cut/max-flow algorithm consistently proved to be faster than
several standard algorithms, and in some applications made near real-time
performance possible [18]. The implementation of this algorithm was made

available by the authors upon request for research purposes.



Chapter 5

Experimental Setup

The final goal of the development of theorical methods is their application to real
problems to give the solutions needed. An essential previous step is the study of
the behaviour of the Bayesian image Segmentation method with Discriminative
Class Learning (BSDCL) in controled enviroments. In this particular case, that
step is the application of the proposed algorithms to simulated hyperspectral
datasets where all the data characteristics are controlled and known by the user.
In this chapter, the datasets used to test the methods developed in this work are
presented, as well as the experimental procedures applied to infer the quality
of the BSDCL method. The datasets include synthetic hyperspectral images as
well as benchmarked hyperspectral datasets and are presented in sections 5.1,

5.2 and 5.3. In section 5.4 the experimental procedures are presented.

5.1 Synthetic test data

The generation of the simulated hyperspectral datasets can be viewed as a two
step procedure: (i) generation of label images, y; (ii) generation of features

images, Xx.

66
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The label images were generated using a MLL distribution (see Section 4.2) using
the Gibbs sampler [50] with a 2"? order neighbourhood, where the 2"¢ order
neighbourhood of a site (i, j) is considered as the set of sites N; ; = {(¢,7 + 1),
(i=1,+1), (i—1,5), = 1,5~1), (5 —1), (i+1,5—1), (i+1,7), (i+1,5+1)}.
The shape of these label images depends on a parameter ((ysrz) that controls
the spatial continuity. A higher value for § produces a more homogeneous spatial
continuity image. Figure 5.1 shows three examples of these label images with 4

classes, for By, = 0.5, By = 1 and Bz = 2, all of 120 x 120 pixel size.

(a) BarrL = 0.5 (b) Burr =1 (c) Burr =2

Figure 5.1: Image labels with four classes generated by a MLL distribution for

different values of .

To apply the methods developed, different types of image labels were generated.
Images with 4 and 10 classes and with different degrees of spatial continuity
(for example, with Sy, = 1;1.2;1.4;1.6;1.8 and 2) were generated, all with
120 x 120 pixel size.

The simulated feature images, x, were generated according to a Gaussian density
p(x|y), were the prior p(y) follows a MLL density. The feature images were ob-
tained by adding zero-mean Gaussian independent noise with standard deviation
on to a source matrix of mineral signatures. In this way, the simulated spectral

vector x; for i € S, given the label y;, is Gaussian distributed with mean pu(y;)
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and covariance matrix o3I, i.e, z; ~ N (u(y;), 03 I). The means u(y;), playing
the role of spectral signatures, were extracted from a source matrix provided
by a Matlab data file, and were extracted from the USGS spectral library [109].
FEach mineral signature is evaluated in 221 spectral bands, resulting in a dataset
of dimension 120x120x221.

The noise variance can be tunned to test the behaviour of the algorithm. Values
of 0% = 0.01,0.1 and 1 were tested in FSMLR algorithm. However, the majority
of tests were done by setting 012\, = 1, corresponding to a signal-to-noise ratio

below one, resulting in a hard classification problem.

5.2 Indian Pines Dataset

One of the most popular hyperspectral image data sets used to test image
processing techniques is the well-known hyperspectral AVIRIS spectrometer
Indian Pines 92 from Northern Indiana [69]. This benchmarked dataset has
been frequently used to test several techniques in the processing of hyperspectral

images, providing a good evaluation exercise. The ground truth data image

Figure 5.2: AVIRIS image used for testing. Left: original image band 50 (near

infrared); Centre: training areas; Right: validation areas.

consists of 145x145 pixels of the AVIRIS image in 220 contiguous spectral
bands, at 10 nm intervals in the spectral region from 0.40 to 2.45 pym. The
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spatial resolution of these images is 20m.

Four of the 224 original AVIRIS bands contained no data or zero values and
were thus removed. In the remaining 220 bands, there are 20 spectral bands
that correspond to spectral regions where there is a significant absorption of
radiation by the atmosphere due to water vapour. Bands 104-108, 150-163 and

220 are for that reason considered noisy bands. The image covers an agricultural

Table 5.1: Number of training and validation samplesin the AVIRIS Indian

Pines hyperspectral image.

CLAss TRAINING VALIDATION
C1 - Corn-no till 742 692
C2 - Corn-min till 442 392
C3 - Grass/Pasture 260 237
C4 - Grass/Trees 389 358
C5 - Hay-windrowed 236 253
C6 - Soybean-no till 487 481
C7 - Soybean-min till 1245 1223
C8 - Soybean-clean till 305 309
C9 - Woods 651 643
4757 4588

portion of North-West Indiana with 16 identified classes. The data set represents
a very challenging land-cover classification scenario, in which the primary crops
of the area (mainly corn and soy-beans) were very early in their growth cycle,
with only about 5% canopy cover. Discriminating among the major crops under
this circumstances can be very dificult (in particular, given the moderate spatial
resolution of 20m).

Due to the insufficient number of training samples, seven classes were discarded,



70 CHAPTER 5. TEST DATASETS

leaving a dataset with 9 classes distributed by 9345 elements. This dataset
was randomly divided into a set of 4757 training samples and 4588 validation
samples. The number of samples per class and the class labels are presented in

table 5.1 and their spatial distribution within the image ca be seen in figure 5.2.

5.3 Pavia Datasets

The Pavia hyperspectral dataset was also used to test the BSDCL method. The
Pavia datasets were collected by the optical sensor ROSIS 03 (Reflective Optics
System Imaging Spectrometer) in the framework of HySens project managed by
DLR (German Aerospace Agency) [36]. The images from the ROSIS spectrom-
eter have 115 spectral bands with a spectral coverage from 0.43 to 0.86 pm. In
the particular case of the images over Pavia, the flight altitude was chosen as
the lowest available for the airplane, which resulted in a spatial resolution of
1.3m per pixel. Two scenes over Pavia were made availabe, a scene over the
city centre and another over Pavia University. Three different subsets of the full

data were then considered:

e Dataset 1 - Image over Pavia city centre with 492 by 1096 pixel in size, 102
spectral bands (without the noisy bands) and nine ground-truth classes dis-

tributed by 5536 training samples and 103539 validation samples (Fig.5.3).

e Dataset 2 - Image over Pavia University with 310 by 340 pixel in size, 103
spectral bands (without the noisy bands) and nine ground-truth classes

distributed by 3921 training samples and 42776 validation samples (Fig.5.5).

e Dataset 8 - Superset of the scene over Pavia city centre, including a dense
residential area, with 715 by 1096 pixel in size and nine ground-truth
classes distributed by 7456 training samples and 148152 validation samples
(Fig.5.4).
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In the following subsections the images are shown as well as the spatial dis-
tribution of the training and test samples, and the distributions of pixels per

class.

5.3.1 Pavia Centre

The image over Pavia city center presents a dense residential area on one side
of the river Ticino and open areas on the other side. Originally, this image was
of size 1096 by 1096 pixels, however this image included a 381 pixel wide black
strip in the middle of the image. For correct processing, the stripe with no
information was removed, resulting in a two part image with 715 by 1096 pixels

— Dataset 3 (Fig. 5.4a).

The right part of the original image was considered individually. It resulted in

a 492 by 1096 pixels size image — Dataset 1 (Fig.5.3a).

B c1
B c2
c3
B ca
B cs
cé
c7
Bcs
co

(a) RGB Color Compos- (b) Training Set (¢) Ground Truth
ite (80,45,10)

Figure 5.3: Pavia Dataset 1
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Figure 5.4: Pavia Dataset 3

Some spectral bands were removed due to noise thus resulting in datasets of
dimension 102. Nine land cover classes were identified in the city centre area:
water, trees, meadow, bricks, bare soil, asphalt, bitumen, tiles and shadow. The
number of samples per class and the class labels are presented in table 5.2,
while the spatial distribution of training sites of datasets 1 and 3 are presented
in figures 5.3b and 5.4b, respectively. The spatial distribution of ground truth
pixels used to test the performance of the segmentation procedure are presented

in figures 5.3c and 5.4c, respectively.

5.3.2 Pavia University

The second test site is around the Engineering School at the University of Pavia
(Dataset 2). The University area image is 610 by 340 pixels (Fig.5.5a). Nine
classes were also identified, however they are not all the same as in Pavia centre.
Information classes for Dataset 2 are: asphalt, meadow, gravel, trees, metal,
bare soil, bitumen, brick, and shadow.

The number of samples per class and the class labels are presented in table 5.3.
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Table 5.2: Number of training and validation samples of dataset 1 and 3

Dataset 1 Dataset 3
CLaAss TRAINING VALIDATION TRAINING VALIDATION
C1 - Water 745 65278 824 65971
C2 - Trees 785 6508 820 7598
C3 - Meadow 797 2905 824 3090
C4 - Bricks 485 2140 808 2685
C5 - Bare Soil 820 6549 820 6584
C6 - Asphalt 678 7585 816 9248
C7 - Bitumen 808 7287 808 7287
C8 - Tiles 223 3122 1260 42826
C9 - Shadow 195 2165 476 2863

5536 103539 7456 148152

The spatial distribution of training sites and ground truth pixels are presented

in figures 5.5b and 5.5¢, respectively.

5.4 Experimental Procedures

This section outlines the experimental procedures performed to test the pro-

posed classification and segmentation methods (FSMLR and BSDCL, respec-

tively).

Both in FSMLR as in BSDCL methods, there are parameters to be tuned by

the user. A simple and common way to estimate the optimal set of parameters

is the cross-validation method [38]. In k-fold cross validation method, the set of

labelled training samples is randomly divided in k& disjoint parts of equal size.



74 CHAPTER 5. TEST DATASETS

c1
cz
c3
Bl ca
M cs
B cs
W c7
Hcs
co

(a) Color Composite (b) Training Set (¢) Ground Truth

Figure 5.5: Pavia Dataset 2

The classifier, or any other algorithm, is then trained k times, each time with
a different set, held out as a validation set. The estimated performance is the
mean of those k errors and the set of optimal parameters is selected as the one
that gives the lower validation error. It is essential that the validation set does
not include points used for training the parameters.

In each scenario analysed, a k-fold cross validation was applied to the training
set, to access the optimal set of parameters. A measure to evaluate each method
is given by the Overall Accuracy (OA), which is calculated over an independent
test set. The OA are simply the ratio of the number of correct classified pixels
over the total number of pixels in the independent test set.

The simulated datasets presented in section (Sec. 5.1) allows for an extensive
evaluation of the performance of each method since the labels of all image pixels
are known. The tests with simulated images are of great interest since it is
relatively easy to generate different scenarios regarding several parameters, such
as size of training sets, number of classes, spatial dispersion of classes and degree

of noise presented in the feature images.
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Table 5.3: Number of training and validation samples of Dataset 2

CLASS TRAINING GROUND TRUTH
C1 - Asphalt 548 6631
C2 - Meadow 540 18649
C3 - Gravel 392 2099
C4 - Trees 524 3064
C5 - Metal 265 1345
C6 - Bare Soil 532 5029
C7 - Bitumen 375 1330
C8 - Brick 514 3682
C9 - Shadow 231 947
3921 42776

In the simulated hyperspectral images, all the pixels present in the image were
used to study the methods. Training and independent test samples were ran-
domly generated with various dimensions, and the k-fold cross validation method
applied: the training sets were used to access the set of optimal parameters for
each method and the independent validation set used to determine the OA, as
well as other measures that allow a more complete evaluation of the performance
of the methods, such as the degree of sparseness, for example.

Both Indian Pines and Pavia datasets present distinct sets for training and
testing (Sec. 5.2 and Sec. 5.3). The Indian Pines training and test sets were
created according with the work by Camps-Valls [26] to make possible a correct
comparison of different classification methods for hyperspectral images. The
Pavia dataset was already provided with the training and test datasets defined.
In an analogous manner to what was done with the simulated images, also with

the benchmarked datasets the k-fold cross validation method was applied to the
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training sets to estimate the optimal set of parameters. The test set was used
to analyse the OA and sparseness degree of the classification methods.
The results of these experiments in several scenarios are presented in the next

chapter.



Chapter 6

Results

In this chapter the results from the experimental tests done over datasets intro-
duced in chapter 5 are presented and discussed. Three main sections compose
this chapter, as a consequence of the number of test datasets used. The results
are discussed for each kind of dataset to facilitate the exploitation of the char-
acteristics, advantages and performance of each method presented in chapter
4. Each section starts by analizing the FSMLR method, both with h(x) linear
and RBF. Studies over the two types of prior (Laplacian and Jeffreys) are also
explored. Finally results from the MRF segmentation procedure are presented.

Figure 6.1 presents a scheme with the different types of algorithms tested for

Datasets FSMLR Segmentation
h(x) linear h(x) linear
Laplacian prior Laplacian prior
h(x) RBF h(x) RBF

* Synthetic
* Indian Pines
* Pavia h(x) linear h(x) linear
Jeftreys prior Jeffreys prior

h(x) RBF h(x) RBF

Figure 6.1: The different types of algorithms tested for each dataset.

7
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each dataset. Both for FSMLR classification as for the segmentation, results for

different priors and input functions are presented.

6.1 Synthetic test data

This section is concerned with the study of the performance of the methods
proposed in chapter 4 when applied to different synthetic images. Synthetic
hyperspectral images were generated to evaluate the performance of the methods
in controlled conditions, having in mind that those performances will vary
accordingly with the characteristics of each image. Tests were done with different
spatial continuity image labels, different number of classes, different degrees
of noise present in feature images and different sizes of training samples. In
addition, the definition of some parameters in each method is also analysed in

this section.

6.1.1 FSMLR with Laplacian Prior

The Laplacian prior enforces the sparsity of the classification methods trough a
regularization parameter A\. This parameter has to be defined by the user. The
choice of the best A can be done by evaluating the OA over the test sets in the
cross validation procedures. This can result in an intensive search that should
be performed each time a classification task is needed. Depending on the goal
of the analysis, some experiments were done using a fixed value for A, like for
example when the goal is to evaluate the performance of the method to different

training set sizes.
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6.1.1.1 h(x) Linear

To analyse the performance of the FSMLR with a Laplacian prior and when
using a linear input function (h(x)) over the features, synthetic hyperspectral
datasets were generated according with the methodology described in section
5.1. The characteristics of the images tested in this subsection are described in

table 6.1. A total of 36 images were created (2x6x3).

Table 6.1: Characteristics of simulated images to test FSMLR with h(x) linear

and Laplacian Prior

Number of Classes (K) 4 and 10
Spatial dispersion of label images (Sarrr) 1,1.2,1.4,1.6, 1.8 and 2

Noise variance of feature images (%) 0.01, 0.1, 1

The variation of the parameters Bys1,1, and o was made to evaluate the response
of the FSMLR to the spatial continuity of label images and to the amount of

noise present in the feature data.

The size of training samples is of great importance and usually it greatly affects
the classification results. In this evaluation, tests were made using 10%, 30%,
50%, 70% and 90% of the image pixels as training set. Datasets with the
characteristics described were simulated ten times for each set of parameters, in
order to better evaluate the FSMLR classification results. A total of 1800 cases

were evaluated (36 images X 5 training set sizes x 10 repetitions).

In this experiment, the sparseness parameter of FSMLR was set to A = 0.0005.
For each dataset, the OA was calculated. For each set of ten datasets with the
same characteristics, the mean of all OA was taken. The graphic representation

of the mean OA is presented in figure 6.2 as a function of the spatial continuity

(BmrLrL)-
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Figure 6.2: Overall accuracies as a function of the spatial continuity (Gysrr) of

the label images for different training set sizes and different noise variance oy .

Comparing the results for different number of classes, it is possible to observe
that the FSMLR performs better for smaller number o classes, namely when
dealing with a hard classification problem (0% = 1). When the 0% values
are lower, there is no significant difference between the results for K = 4 and

K =10.

Globally, as expected, the higher the values of noise variance in the simulated
hyperspectral feature images, the lower the value of OA. The increase of noise
variance highly affects the performance of FSMLR method. It also should be
noted that when the noise variance values are low (0%,=0.01 and 0.1), the OA

are always 100% or very close.

With respect to the variation of spatial continuity of image labels (8asrr), there

is no significant change in OA. The spatial heterogeneity of label images does
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not seem to affect the performance of the FSMLR.

Regarding the size of training sets used and when lower noise variance is present
there is also no significant difference in OA. However, when a higher noise
variance is considered, the use of smaller training sets degrades the performance
of FSMLR. This behaviour is frequent in real problems where normally there
are high levels of noise in images. In those situations, a higher training set size

helps achieving better performance for all classification methods.

Setting 012\[ = 1, corresponding to a signal-to-noise ratio below one, results in
a hard classification problem. And as been observed, lower values for 0]2\, do
not affect significantly the results of FSMLR. For that reason, in the following

experiments only images with this level of noise were tested.

In order to evaluate the influence of the sparseness parameter A, experiments
were done using 10% of image pixels as training set of images with 4 and 10
classes, and 8 = 1 and 2. The choice of the sparseness parameters was made
in a way to test very small values and higher values. In this way, A took values
between 0.0004 and 0.0006 by steps of 0.00005; and between 16 and 24, by steps
of 2.

Figure 6.3: Overall accuracies as function of sparseness parameter (\), for 4 and

10 classes and By = 1 and 2 (lines and dotted lines, respectively).
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Analysing the OA presented in figure 6.3 it is possible to observe that the
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variation of A does not greatly affects the results in terms of OA. However, a
lower value for A\ produces results slightly better (about 1% or 2%). Regarding
the case for 4 classes, the variation of the OA are between approximately 82%
and 85%. When the number of classes is higher, and similarly to what was
observed in figure 6.2, the OA are very low. This has to do with the small size
of the training set used in this experiment (10%). Nevertheless, the behaviour
of the classifier as function of the variation of X is similar to what happens with
4 classes: there is no evidence of great variations in OA related to the choice of

a high or low value for A.

The OA is not the only quality measurement a classifier. When dealing with
large dimension datasets, such as hyperspectral images, it is also important to
evaluate the generalization capacity of the classifier and this can be done by
analysing the sparseness of the classifier. As mentioned before, the \ parameter
is a parameter that controls the sparsity of the FSMLR classification. A feature
is selected whenever the correspondent weight is non zero. The number of
significant features selected by each classifier is then the number of non-zero

feature weights.

Figure 6.4 shows the features weights vector estimated by the FSMLR for A =
0.0004 and 24. From this figure it is easily observed that a higher value for
A largely decreases the number of features selected by the FSMLR method,

improving in this way the sparsity of the classifier.

Recall that the difference between the OA for A = 0.0004 and A = 24 is
low (around 1% or 2% depending on the label image characteristics: number
of classes and spatial continuity), while the number of features selected from
each A\ value is very different. Selecting a lower number of features results in
classification algorithm with higher generalization capacity and less expensive

computationaly.
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Figure 6.4: Feature weights of different sparseness parameters (), for 4 and 10

classes and Gy, = 1 and 2.

6.1.1.2 h(z) RBF

To test the performance of FSMLR with a RBF function, datasets with the

characteristics described in table 6.2 were generated.

Training sets with 10% of image pixels were used to evaluate the performance
of FSMLR when using a RBF for h(z). The use of this type of function enforces
the user to define a parameter o;. In these experiments, several values for A
were also tested. Recall that A controls the sparsity of FSMLR method. The
parameter A took values between 0.0004 and 0.0006, with increments of 0.00005
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Table 6.2: Characteristics of simulated images to test FSMLR with h(z) RBF

and Laplacian Prior

Number of Classes (K) 4 and 10
Spatial dispersion of label images (Sa/rr) 1 and 2
Noise variance of feature images (%) 1

and the oj took values between 0.48 and 0.72, with increments of 0.06. This
resulted in 25 possible solutions for the classification of each image generated
with the characteristics described in table 6.2. A total of 1000 cases were tested

(4 image types x 25 classifiers x 10 repetitions).

Figure 6.5 presents the OA produced by the FSMLR classification method under
these conditions. The OA are presented as function of o to search for a
relation between the change of the parameter o;, and the final OA. The five

lines presented in each figure, correspond to the five values of \ tested.

When 4 classes are considered (K = 4), the OA results vary around 5% (from
80% to 85% for By = 1, and 81% to 86% for Bapr = 2). However, these

variations do not seem to be directly related with the variation of oy,.

When 10 classes are considered (K = 10), it is possible to observe that, the
increase of oy, results in higher OA. But similarly to what happened in the h(z)
linear case, when only 10% of pixels are considered to train the classifier, the

results of the FSMLR classifier are very poor (below 50%).

6.1.2 FSMLR with Jeffreys Prior

The Jeffreys prior is a parameter-free prior. In this way, it removes the sparse-

ness parameter A from the FSMLR while at the same time it is capable of
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Figure 6.5: FSMLR classification with h(z) RBF OA, as function of the variation

of op, for 4 and 10 classes and By, = 1 and 2.

keeping the method sparsity. This property of the Jeffreys prior facilitates the
search for the best model to classify an image since there is no need to search fo
the best A, as was the case with the Laplacian prior. In this subsection, results
of the use of the Jeffreys prior are shown in order to evaluate the sparseness
capacity of this prior as well as the capacity to correctly classify a hyperspectral
image. The results using the Jeffreys prior are also compared with those from

the Laplacian prior.
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Table 6.3: Overall accuracy of FSMLR using different training sets, with A(z;)

Linear and K = 4, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 30% 40% 50%
B =1 Laplacian Prior | 83.74% 87.55% 89.27% 90.02% 90.34%
Jeffreys Prior | 78.75% 85.00% 86.95% 88.26% 89.05%

B =2 Laplacian Prior | 83.36% 87.62% 89.54% 89.70% 90.45%
Jeffreys Prior | 79.15% 84.75% 87.29% 87.94% 88.98%

6.1.2.1 h(z) Linear

To evaluate the method performance depending on the size of the training
sets, tests were made using 10%, 20%, 30%, 40% and 50% of image pixels
as training set, when a linear h(x;) was considered. The image labels analysed

were generated using Oy, = 1 and By = 2.

Tables 6.3 and 6.4 present the OA obtained, considering four and ten classes,
respectively. For each case, experiments were carried out using a Laplacian prior
(setting A = 0.0005) and the Jeffreys prior. Tables 6.3 and 6.4 present both OA

results.

In both cases, four and ten classes, the OA from the Jeffreys prior are lower

than with the Laplacian prior.

Considering the case with K = 4, these differences go from around 5% to 1%,
depending on the size of training set used. The higher the training set size is, the
smaller is the difference in the OA values between the Laplacian and Jeffreys
prior. Likewise to what was observed earlier, the use of a larger training set

highly improves the OA of the classification. The differences in OA when using
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Table 6.4: Overall accuracy of FSMLR using different training sets, with h(z;)

Linear and K = 10, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 30% 40% 50%
B =1 Laplacian Prior | 46.80% 57.11% 62.68% 65.08% 67.37%
Jeffreys Prior | 45.29% 53.53% 58.82% 61.53% 63.42%

(3 =2 Laplacian Prior | 48.27% 57.49% 62.42% 65.10% 67.58%
Jeffreys Prior | 45.04% 54.48% 58.50% 61.19% 62.79%

10% or 50% of pixels to train go from 7% to 10%.

When ten classes are considered, the OA obained with the Laplacian prior are
also higher than with the Jeffreys prior, from around 5% to 2%, depending
on the training set size use, identically to what was observed for four classes.
However in this case, these OA differences are smaller when smaller training set
sizes are considered, unlike to what happened with four classes. Globally, the
OA in this case are much smaller than when four classes were used. Similarly to
what was observed in previous sections, when only 10% of the image pixels were
taken as training set, the OA are very small, below 50%. When the training
set size increases, the OA also increases (near 20%) but never reaches the levels

achieved in the problem with four classes.

Concerning the sparseness promoted by each prior, table 6.5 presents the number

of selected features by each prior, in the case where four classes were considered.

The OA from Jeffreys prior revealed to be lower than with the Laplacian prior.
However, analysing the sparsity of both priors, it is possible to observe that
the Jeffreys prior produces a sparseness solution highly reducing the number of

features selected to perform the classification. This improves the generalization
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Table 6.5: Number of significant features selected (from 224) by each prior,
whith h(z;) linear and K = 4.

SIZE OF TRAINING SET
10% 20% 30% 40% 50%
Laplacian Prior 224 223 223 223 223
Jeffreys Prior 98 27 157 146 127

capacity of the classification and reduces the computational effort.

Like observed in section 6.1.1.1, a higher value for A conducts a smaller number
of selected features. To better evaluate the sparsity of Jeffreys prior, results from
section 6.1.1.1 (where several values for A were tested to evaluate the sparsity
of the Laplacian prior) are now compared to the results from Jeffreys prior in

the same conditions (with 10% of image pixels as training set).

The feature weight vector estimated by the FSMLR when using a Laplacian prior
with A = 0.0004 and 24, and with the Jeffreys prior are presented in figure 6.6.
In this figure it is evident that the Jeffreys prior produces more sparse solutions
than when the Laplacian prior is used with a small value for A\. However, when
higher values for A are considered, the Laplacian prior improves the sparseness
achieved with the Jeffreys prior. Nevertheless, it is important to note that the
use of the Laplacian prior enforces the user to define the A value. This task may
not be easy for the user if he does not have sensibility for this problem. The
Jeffreys prior do not need any parameter to be defined by the user and even in

this context can achieve sparse solutions competitive with the Laplacian prior.
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Figure 6.6: Feature weights generated by Laplacian prior (for different sparse-
ness parameters, \) and Jeffreys prior, for 4 and 10 classes and [y, = 1 and

2.

6.1.2.2 h(z) RBF

To analyse the performance of the Jeffreys prior, when a RBF is used in h(z),
tests were carried out in the same conditions as the ones in section 6.1.1.2:
training sets with 10% of image pixels, image labels with four and ten classes,
Bumrr = 1 and 2. Since a RBF has to be defined in h(zx), there is the oy,
parameter that has to be defined by the user. In a similar way to what was

done in section 6.1.1.2, oy, was made to vary from 0.48 to 0.72, by steps of 0.06.
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Figure 6.7: FSMLR classification with h(z) RBF OA, as function of the variation
of A and with reference lines for Jeffreys prior (dotted lines), for 4 and 10 classes

and By = 1 and 2.

Figure 6.5 showed no direct variation of OA with oy, values. For this reason, the
results of OA presented in figure 6.7 are shown as function of A\, and include a
reference line of the OA produced by the Jeffreys prior. In this way it is easier

to compare the OA of both priors, for different values of o, and A.

In the case of four classes, the OA produced by the Jeffreys prior competes with
the OA from the Laplacian priors for different values of A, having indeed higher

values of OA in the majority of cases for various values of oy,.

When ten classes are considered, the use of the Jeffreys prior improved the OA
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achieved with the Laplacian prior. Recall that the OA of FSMLR with Laplacian
priors when using a small training set were very poor, below 40%. The Jeflreys

prior improved these results in 10% to 20%, depending on the oy, considered.

Note that the values used for A in these experiments are very low, producing
solutions not very sparse, but with higher OA than if a higher value for A was
used. This is a very good indicator of the good performance of the Jeffreys

prior.

6.1.3 Segmentation with MRF

The application of the FSMLR to classify an hyperspectral image can be in-
terpreted as step in the segmentation procedure presented in this thesis. In
this section results of segmentation process are presented. The results are
presented in two parts depending on the type of h(x) used — linear or RBF. The
results of the two priors, Laplace and Jeffreys, are presented together to a better
comparison of results. The majority of results presented here are based in the
experiments performed in sections 6.1.1 and 6.1.2 and can thus be interpreted

as the conclusion of the process.

In the segmentation process there is a parameter that should be defined by the
user in the a-Expansion algorithm. This smoothness parameter, G, has to do
with the spatial heterogeneity of label images. In this set of experiments over
synthetic images, 3 was set to be equal to [By/rr and variations of £0.1 over

B were also tested.

6.1.3.1 Laplacian and Jeffreys Prior with h(z) Linear

Based on the experiments performed in section 6.1.1.1, figure 6.8 presents the

comparison of OA of FSMLR classification with a Laplacian prior with A =
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0.0005 and of MRF segmentation process, as function of Byrp for 4 and 10
classes. Dotted lines corresponds to the OA for the FSMLR classification and
solid lines for the MRF segmentation, with 8 = Bprr. The graphics are
displayed for different values of feature noise: ¢ = 0.01,0.1 and 1. Different
training set sizes were also considered. In some plots, the OA of the FSMLR
classifier (dotted lines) are nearly 100%, and the lines are thus not visible in

those plots.
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Figure 6.8: Segmentation overall accuracies as function of spatial continuity
(Bamrr) of the label images for different training set sizes and different noise

variance oy.

In the case of K = 4 (Figures 6.8a, 6.8b and 6.8c) and for larger values of
Oy and 012\, = 0.01 or 0.1, the results from FSMLR classifier and MRF
segmentation are similar. When the noise increases, the MRF outperforms the
FSMLR by over 5%. As expected for low values of By/1.1,, the performance of

the MRF segmentation is slightly worse. However, the segmentation method
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clearly outperforms the FSMLR classification when the noise is high (0%, = 1).
The different sizes used for the training set do not seems to affect the results,
except for the case of U]2V = 1, where the use of a smaller training set degrades

the performance of the FSMLR.

In the case of K = 10 (Figures 6.8d, 6.8¢ and 6.8f), the results for 0% = 0.01
and 0'12\, = 0.1 are very similar for both methods. For ¢ = 0.1, it is nevertheless
possible to see a small improvement of the OA achieved with MRF segmentation.
Once again, when higher noise in the feature image is considered (012\, =1), MRF

segmentation clearly outperforms FSMLR classifier, by over 30%.

Likewise to the analysis performed in section 6.1.1.1, also with the MRF seg-
mentation no significative differences were observed when low values for 012\, are
considered. For that reason, the following experiments were taken using a fixed

2 _
value for o5 = 1.

The MRF segmentation performance was also evaluated when different priors
(Laplacian and Jeffreys) in the feature density estimation procedure are consid-
ered. In these experiments, the influence of different training set sizes is also
analysed using training set sizes of 10%, 20%, 30%, 40% and 50% of image
pixels. The smoothness parameter of a-Expansion algorithm was set to be
equal to Byrrr- Tables 6.6 and 6.7 present the OA of the MRF segmentation

for B = 1 and 2, for 4 and 10 classes, respectively.

Considering the case of four classes, and independently of the (p;r; used,
the performances in terms of OA is very similar for both priors used in the
densities estimation step. The differences in the OA for both prior are minimum.
Regarding the size of training sets used, it is observed that the increase of the
training size once again improves the OA. It is also interesting to note that the
difference between using 20% or 50% sizes of training sets produces very similar

OA. The main difference happens when the training size is changed from 10%
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Table 6.6: Overall accuracy of MRF segmentation using different training sets,

with h(x;) Linear and K = 4, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 30% 40% 50%
Bymrr =1  Laplacian Prior | 96.85% 98.38% 98.79%  98.88%  98.94%
Jeffreys Prior | 96.65% 98.15% 98.44% 98.63% 98.81%

By =2 Laplacian Prior | 98.51% 99.13% 99.32% 99.32% 99.33%
Jeffreys Prior 97.62% 98.61% 99.05% 99.10% 99.07%

to 20%.

Tests with ten classes revealed lower OA than with four classes, similarly to what
was observed in the FSMLR classification problems. However, the improvement
achieved by the segmentation procedure was very good (around 30%). In the
case of ten classes and Byrrr, = 1 the use of Jeffreys prior produced lower OA
than the Laplacian one for all training set sizes, except when 10% of pixels were
considered. The differences in the OA between both priors are around 2%.

When By, = 2, these differences are higher, varying from 16% to 4%, depend-
ing on the size of training set. When lower training sets are used, the differences
between the OA of both priors become higher. Increasing the size of the training
sets, smoothes the differences between the OA for both priors. In either ways,
the OA achieved with 50% of pixels as training samples produced very good
results for segmentation OA, comparing with the OA achieved by the FSMLR

classification (see table 6.4).

Regarding the choice of 3 parameter from the a-Expansion algorithm, results
with 8 = {Bmrr — 0.1; Barrr; Burr + 0.1} are presented in table 6.8. The sizes

of training sets considered were 10%, 50% and 90% of image samples. Image
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Table 6.7: Overall accuracy of MRF segmentation using different training sets,

with h(z;) Linear and K = 10, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 30% 40% 50%
B =1 Laplacian Prior | 70.36% 88.36% 92.36% 93.67% 93.97%
Jeffreys Prior | 72.67% 84.76% 89.79% 91.89% 91.62%

(3 =2 Laplacian Prior | 83.45% 93.74% 95.63% 95.14% 96.42%
Jeffreys Prior | 66.87% 84.02% 89.16% 90.58% 92.26%

labels having 4 and 10 classes were tested.

The case of K = 4 do not show any significative variation in the OA promoted
by the change in (§ values. When ten classes are considered and the size of
training set is small (10%), the variation in the OA reaches 5%. When the size

of training set increases, the difference between OA decrease.

6.1.3.2 Laplacian and Jeffreys Prior with h(z) RBF

This final section of tests with synthetic images analyses the performance in
terms of the segmentation algorithm OA when a RBF function over the features

is considered in the densities estimation step with the FSMLR, algorithm.

As seen previously, in sections 6.1.1.2 and 6.1.2.2, once a RBF function is
considered there is an extra parameter to be defined by the user — o5. The
definition of this parameter could influence the segmentation results, so this
parameter should be considered in the analysis of segmentation OA. The type
of prior used in the FSMLR method for estimation the features densities should

alse be taken in account, as well as the smoothness parameter from the a-
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Table 6.8: Overall accuracies for the proposed segmentation method for different

values of (.

k=4 k=10
Training set size:  10% 50% 90% 10% 50% 90%

B=0.9196.26% 98.91% 98.96% | 66.18% 95.27% 95.85%
Burr =1 (=1 ]96.33% 98.92% 99.48% | 71.76% 94.99% 94.91%

B=11196.55% 98.93% 98.82% | 68.54% 94.49% 94.77%
B=1919863% 99.36% 99.38% | 89.59% 96.61% 97.40%
Burr =2 [S=2 |9849% 99.27% 98.96% | 89.38% 97.56% 97.54%
B=211]987% 99.27% 99.38% | 87.68% 97.51% 94.88%

Expansion algorithm.

Regarding these three variables in the whole segmentation procedure, first the
influence of changing the 8 parameter from the a-Expansion algorithm is con-
sidered. Then, the analysis will focus on the influence of the type of prior used

and the variation in oy, values.

Similarly to sections 6.1.1.2 and 6.1.2.2, all experiments were done considering

10% of image pixels as training samples, and the label images were generated

using ﬁMLL =1 and ﬁMLL = 2.

Table 6.9 presents the OA of segmentation algorithm setting 8 = Garrr, — 0.1;
Oyvinn; Burr + 0.1 for images with 4 classes. The OA from the FSMLR classifi-
cation method used to estimate the features densities is also presented in order
to facilitate the analysis of the improvement achieved with the segmentation

procedure.

As can be observed, the variation of § results in small variations in OA, around



6.1. SYNTHETIC TEST DATA RESULTS 97

Table 6.9: Overall accuracies using a RBF kernel in the estimation of class
densities, for the proposed segmentation method and FSMLR classification,

using 10% of pixels as training data.

=09 p=1  B=11| FSMLR
Burp=1| 9627%  96.91%  97.23% |  83.53%

B=19 B=2 B=21| FSMLR
Burr=2| 97.88%  97.82%  97.77% 83.77%

2% for By, = 1 and no significant variation for 8y,1,;, = 2. Like what happened
in the Linear case, also here, the improvement achieved by the segmentation

procedure was around 14%.

Figure 6.9 presents the OA for the segmentation of images with 4 and 10 classes,
and By = 1 and B = 2, considering different values for o, and different
priors. Dotted lines correspond to the OA achieved with the Jeffreys prior, solid
lines correspond to the Laplacian prior, with A varying from 0.0004 to 0.0006
by steps of 0.00005.

Analysing the case where K = 4 and when Sy, = 1, the OA of the segmented
images using the Jeffreys prior outperform the ones from the Laplacian prior
independently of the op or A values considered. The major differences between
both priors happens for o, = 0.6 and A = 0.0005; A = 0.0005 and o} = 0.54
and 0.72. In these cases, the differences are around 8%. In the remaining cases,
the differences are between 4% and 1%.

When Gasrr = 2, the differences between OA promoted by each prior are very
small except in the case where o, = 0.66 is considered and the case where
A = 0.00055 and oj, = 0.54, where the OA for the Laplacian prior is around 10%

below the OA from the Jeffreys prior.
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Figure 6.9: Segmentation OA, with h(xz) RBF as function of the variation of A
and with reference lines for Jeffreys prior (dotted lines), for 4 and classes and

Oy = 1 and 2.

Considering the 10 classes case (K = 10), the results from the segmentation
that included the Laplacian prior in the estimation of features densities step,
were very low for either cases (Byrr = 1 and By = 2). The Jeffreys prior
produced better results specially when B;;r.r, = 1. Nevertheless, the results of
OA segmentation for 10 classes are again (likewise results presented in other

sections) lower than the OA for images with lower number of classes.
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6.2 Indian Pines dataset

This section presents the results of the application of the FSMLR classification
algorithm and the segmentation with MRF over the benchmarked dataset Indian
Pines. The characteristics of this dataset are described in section 5.2. The
learning process of each method was performed over subsets of the training set
and the OA presented here were measured in the independent test set described

in 5.2.

The Indian Pines dataset has been widely used to test and evaluate several
hyperspectral image processing algorithms, including classification and segmen-
tation ones. The analysis of the results in this section is for that reason done

together with the comparison of results from methods presented in other works.

6.2.1 FSMLR with Laplacian Prior

In this subsection, the results are presented using the complete set of bands and
discarding the 20 noisy bands. The objective was to observe the influence of a

coarse feature selection on the classifiers performance.

The tuning process for each classifier was done by first dividing the training set
considered into a subset with approximately 10% of training samples, which was
used to learn the classifier, and the remaining 90% used to compute an estimate
of the OA. This process was repeated 20 times in order to obtain the parameter

that maximizes the OA in the remaining training sets.

The OA presented are a result of the application of the optimal set of parameter
to the independent test set. These results are compared with the ones achieved

by Camps-Valls et. al [26].
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Table 6.10: Best A and number of support vectors (SV) used with h(x) linear.

220 BANDS 200 BANDS
10% 20% 100% 10% 20% 100%
A 16 22 18 16 18 18
SV 28 22 85 24 39 37

6.2.1.1 h(x) Linear

The learning process of the FSMLR classifier when h(z) is linear was performed
using different training set sizes to evaluate the response of the classifier to this
variable. Training sets with 10%, 20% and 100% of the original training set

were considered.

Since one is dealing with a Laplacian prior, the definition of the A parameter

was also an object of analysis. Tests were done using A = 16, 18, 20, 22 and 24.

Table 6.10 presents the parameters that provided the highest OA for each ex-
perimental scenario and respective number selected features (number of support
vectors). As one can see, there is in fact a large reduction on the number of

features needed to built the classifier.

The OA in table 6.11 are presented to compare results between the use of
220 spectral bands and without the noisy bands. It can be observed that the
improvement in OA due to the coarse selection is not significant. In some cases,
the use of all 220 bands gives better results than with 200 bands (without the
noisy bands). However, it is worth noting that the differences are not significant

in both cases.

In order to better evaluate these results, a comparison was made with the results

obtained using other kernel-based methods in the same dataset [26]. Although
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Table 6.11: Results with h(x) linear using 10%, 20% and the complete training

set.

10% 20% 100%
220 bands 76.55% 79.69% 85.77%
200 bands 75.57% 81.60% 85.24%

Table 6.12: Comparison of the FSMLR classification with the results from [26].

SMLR LINEAR LDA [26]
220 bands 85.77% 82.32%
200 bands 85.24% 82.08%

there were some limiting factors in the practical application of the proposed
method, due to limitations in Matlab processing capacity, the results obtained
are very encouraging. The performance of FSMLR linear proved to be superior

to Linear Discriminant Analysis (LDA) [26] as it is summarised in table 6.12.

6.2.1.2 h(z) RBF

Adopting a RBF for h(x) lead, the user to define an extra parameter, the oy,
value. Since the parameters are defined using the cross validation method,
the addition of one more parameter turns the computational process heavier.
For that reason, experiments were carried out using subsets with 10%, 20%
and 50% of the training samples to learn FSMLR the classifier with a RBF
function and a Laplacian prior. The values tested for these parameters were

A =0.0004, 0.00045, 0.0005, 0.00055, 0.0006 and o = 0.48,0.54, 0.6, 0.66, 0.72.

In table 6.13 an example of the tuning process over one subset of 20% of the
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Table 6.13: OA of a FSMLR classification with ~(z) RBF and a Laplacian prior,

using 20% of the training samples.

Moy, 0.48 0.54 0.6 0.66 0.72
0.0004 85.06% 85.53% 85.37% 84.93% 84.40%
0.00045 85.14% 85.56% 85.32% 84.98% 84.38%
0.0005 85.24% 85.50% 85.32% 84.82% 84.27%
0.00055 85.45% 85.43% 85.22% 84.66% 84.43%
0.0006 85.48% 85.40% 84.95% 84.56% 84.38%

training samples and 220 spectral bands is showed. In this example we take
o = 0.54 as the best 0. Then we fixed this value and looked for the best A
running 20 times the same procedure for different subsets of the same size. The
same process was carried out to achieve the best A\ and o, using 10% and 50%

of the training set.
Table 6.14 presents the OA results considering different sizes of training sets

and different number of spectral bands considered. Once again, it is patent the

Table 6.14: OAs of FSMLR with h(z) RBF and Laplacian prior, using 10%,

20% and 50% of training samples.

10% 20% 50%
220 bands 82.93% 87.12% 90.12%
200 bands 84.98% 86.73% 90.52%

influence of the training set size used to train the classifier in the final results.
The OAs measured in the test set increases with the size of the training set

used.
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Regarding the influence of the number of spectral bands used, it is not detectable
a significant influence in using or not the 20 noisy bands, likewise the linear
case. However, it is worth pointing out that the use of a higher number of spec-
tral bands increases the computational complexity of the FSMLR classification
method. Also, considering that those bands are noisy bands the use of them will
not add important information to the classification process. For these reasons,
in the experiments reported in the next sections, the 20 noisy bands will be

excluded from the experiments and only 200 spectral bands will be considered.

Comparing the results of FSMLR classification with the ones from a SVM-
RBF classification (from [26]), they are very similar. The values presented in
table 6.15 for SVM-RBF are approximate values extracted from graphical data
presented in figure 6 of [26]. Although for RBF kernels our method did not
outperform the method used in [26], the sparsity of FSMLR can be an advantage

for large datasets.

Table 6.15: Comparison of the FSMLR classification with the results from [26].

FSMLR RBF(50%)  SVM-RBF (50%) [26]
220 bands 90.12% ~ 91%
200 bands 90.52% ~ 91%

6.2.2 FSMLR with Jeffreys Prior

This subsection presents the results of using a Jeffreys prior in the FSMLR
classification method. The OA achieved with this prior is compared with the OA
obtained using the Laplacian prior. Throughout this section only 200 spectral

bands were used.
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6.2.2.1 h(x) Linear

Considering a linear function, experiments were carried out with subsets of

training set with 10%, 20%, 50% and 100% of training samples.

Table 6.16 presents the OA validated in the independent test set, for each
training set size used to learn the classifier. Once again, the OA results increase

with the size of training set used.

The OA produced by the Jeffreys prior are lower than the ones from FSMLR
classification with a Laplacian prior. The differences vary from 1% to 3%,
depending on the size of the training set used, being smaller when a bigger

training set is used.

Table 6.16: OA of FSMLR classification using 10%, 20%, 50% and the complete

training set, with h(z;) Linear, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 50% 100%
Laplacian Prior 75.78% 78.92% 85.00% 86.44%
Jeffreys Prior 72.99% 76.33% 83.26% 85.24%

However, looking to the level of sparsity of each prior, the Jeffreys prior uses
less number of features, producing in this way more sparse solutions than the

Laplacian prior.

Table 6.17 shows the number of selected features by each prior. It can be
observed that for all sizes of the training set, the Jeffreys prior selects around

half the number of features that the Laplacian prior.

Recall that we are dealing with hyperspectral images where the dimension is very



6.2. INDIAN PINES DATASET RESULTS 105

Table 6.17: Number of significant features selected by each prior, whith A(z;)

linear.

SIZE OF TRAINING SET
10% 20% 50% 100%
Laplacian Prior 34 49 71 105
Jeffreys Prior 18 27 39 51

high and for that reason a method that produces good OA with less number
of features selected is preferable since it will have a significant impact in the
computational burden. Also, the Jeffreys prior avoids the search for the best
sparsity parameter (\) needed in the Laplacian prior. For these two reasons,
and although the OA produced by the Jeffreys are slightly lower, the Jeffreys

prior may be a better option.

6.2.2.2 h(z) RBF

To test the use of a Laplacian prior when a RBF is considered to estimate the
features densities, training sets with 10%, 20% and 50% of training samples were

used.

The OA for each training set size, and both priors are presented in table 6.18.
Once more, the OA increases with the size of training sets used. The use of the
RBF function in the FSMLR improved the OA when compared to the linear
case (see 6.16), achieving with 50% of training samples better results than the

linear case with the complete test set.

Comparing the performance of Jeffreys and Laplacian priors, also with a RBF
function the Laplacian prior produces better OA. Here, the differences between

the OA of each prior vary between 5% and 2%, being the highest difference for
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Table 6.18: OA of FSMLR classification using 10%, 20% and 50% of training

set, with h(x;) RBF, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 50%
Laplacian Prior 83.70% 86.44% 90.61%

Jeffreys Prior 78.77% 84.72% 88.64%

the smaller training set size used.

10% of training set 20% of training set 509% of training set
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Figure 6.10: Feature weigths estimated from Laplacian and Jeffreys priors, for

different sizes of training set.

In terms of sparseness, once again the Jeffreys prior retrieves solutions with a

lower number of significative features, as can be seen in figure 6.10.

6.2.3 Segmentation with MRF

This section presents the OA obtained by the MRF based segmentation al-
gorithm proposed in chapter 4. Experiments were carried out in the same
conditions used in previous sections (6.2.1 and 6.2.2). Results are analysed

together for Jeffreys and Laplacian prior for each type of function defined in
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h(z) (linear and RBF).

6.2.3.1 Laplacian and Jeffreys Prior with h(z) Linear

Experiments with h(x) linear were carried out with 10%, 20%, 50% and the
complete training set. In the GCakExpansion method a f = 1.5 was defined
when the complete training set is considered, and 3 = 4 for subsets of training
data. Table 6.19 shows the OA for the MRF segmentation method adopting a

linear function in the feature estimation procedure.

Table 6.19: OA of MRF segmentation using 10%, 20%, 50% and the complete

training set, with h(z;) Linear, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 50% 100%
Laplacian Prior 86.05% 89.45% 89.69% 95.60%
Jeffreys Prior 86.18% 88.58% 90.43% 95.66%

By the analysis of table 6.19, it is possible to observe that the Jeffreys prior
achieves competitive results with Laplacian prior. The performance of the
classifier was found to be nearly independent of the prior used for all training
sets tested, the variations on the OA are minimal. The increase in size of the

training set results in better OA for all methods, as seen before.

Comparing the results from the segmentation method with the ones presented
in sections 6.2.2.1 and 6.2.1.1 it is evident the importance of the addition of
spatial information by the segmentation process. The improvement in OA
promoted by the segmentation process goes from 5% to 13%, being the majority
of these improvements around 10%, independently of the size of training set.

It is also interesting to note that segmentation algorithm using only 10% of
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training samples in the learning process, achieves the same OA that the FSMLR

classification method with the complete training set.

6.2.3.2 Laplacian and Jeffreys Prior with i(z) RBF

In these experiments, training sets with 10%, 20% and 50% of the original train-
ing set were considered. In the GCaExpansion method a § = 4 was considered
to model to spatial distribution of pixels in the segmentation procedure. The
OA for the MRF segmentation method adopting a RBF function in the feature

estimation procedure are shown in Table 6.20.

Table 6.20: OA of MRF Segmentation using 10%, 20% and 50% of training set,

with h(z;) RBF, using a Laplacian and a Jeffreys prior.

SIZE OF TRAINING SET
10% 20% 50%
Laplacian Prior 92.11% 94.62% 97.86%

Jeffreys Prior 89.84% 95.07% 96.71%

In comparison with the linear case, the use of an RBF function improved the

OA, likewise observed in the FSMLR classification analysis.

Regarding the type of prior used, the results from the Jeffreys prior are compet-
itive with the Laplacian revealing once again that the OA of the segmentation
process seems to be independent from the prior used. The differences observed

between OA in table 6.18 are now even smaller.

The improvement promoted by the use of spatial information is also significant,
varying between 7% and 11%. Using only 10% of training samples in the

segmentation process gives us higher accuracies than using 50% of training
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samples in the FSMLR classification.

The introduction of Jeffreys prior was able to keep the good performance of
the Bayesian segmentation method proposed. It should be noted that with this
prior there is no need for searching the parameter that best controls sparsity,
something that has to be done with the Laplacian prior. This reduces signifi-
cantly the time needed to classify the image. The reduction is of the order of
the number of sparsity parameters to be tested. Moreover, the sparsity achieved
by the FSMLR when using a Jeffreys prior is higher than with the Laplacian

prior.

6.3 Pavia datasets

This section presents the application of both the FSMLR classification and
the MRF based segmentation methods presented in chapter 4, to three urban
hyperspectral images over the town of Pavia, Italy. The details of these datasets

were described in section 5.3.

Experiments were carried out to access the efficiency of the presented clas-
sification and segmentation procedures when compared to recent algorithms
developed for processing hyperspectral imagery, presented in [90] like SVM,
MRF based characterization with Discriminant Analysis Feature Extraction and

Extended Morphological Profiles.

Since the goal was to compare the results from the FSMLR classification and
MRF based segmentation algorithms here presented with the results from [90],
experiments were carried out in the same conditions of that work. For that
reason some methods were not applied to all images. In the following sections

this aspect will be detailed.
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6.3.1 FSMLR with Laplacian Prior

To analyse the performance of the Laplacian prior in the Pavia datasets, several
values for \ were considered, depending on the type of function defined for h(x).
Experiments were carried out using the complete training sets defined in section
5.3 and with subsets of this set. All the OA presented were measured in the

independent test set.

6.3.1.1 h(x) Linear

Dataset 1 and Dataset 3 were used to test the performance of FSMLR with
linear function. Experiments were carried out with the complete training set

and OA measured in the independent test set.

The A values tested for Dataset 1 were A = {0.5:0.5:4;5:20}. For Dataset
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Figure 6.11: FSMLR classification OAs, as function of A\, with h(z) linear.

3, X\ values from 1 to 10 were tested. Figure 6.11 shows the OA as function of \.
As it can be observed, the variation in OA promoted by the sparsity parameter
is not significant in both datasets. The variations in OA are less than 0.5% in

both cases.
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Comparing the results of Dataset 1 with the SVM with poly kernel (96.03%,
from [90]), it is observed that the FSMLR does not outperform the SVM.
However, it is important to recall that a linear function is being used, while
results from [90] were obtained with a poly function which can improve the

results since it has higher flexibility to adapt to data.

Regarding the results achieved with Dataset 3, one can say that theseare good
results, considering that the results presented for this dataset in [90] (OA in the
order of 97%) were achieved using methods that provide integration of spatial

details into the classification based on comparison of the spectra.

In order to evaluate the performance of FSMLR classification method when
smaller training samples are considered, 5 subsets from the whole training set
of Dataset 1, with 10%, 20%, 40%, 60% and 80% of each class were randomly
selected to learn the classification algorithm. A five-fold cross-validation method
was used to access the parameters of the FSMLR algorithm. The OA were

evaluated on the complete validation set.

Training set size 10% 20% 40% 60% 80%
Overall Accuracy 85.21% 87.01% 88.25% 88.70% 89.38%

Table 6.21: OA of the FSMLR classification with linear mapping, using different

subsets of the training set.

Table 6.21 summarizes the results obtained. Although the OA increase with the
size of training sets used, it is possible to conclude that the FSMLR classification
method is not drastically affected by the high dimensionality of training samples,
and good generalization performance is obtained — with only 10% of training

samples, 85% of accuracy is reached.
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6.3.1.2 h(z) RBF

When a RBF kernel is considered, the computational complexity increases and
the process of finding the h(z) parameters that gives the highest OA becomes

a very slow task when a large training set is used.

Considering the Dataset 2, a subset with 10% of each class present in the training
samples was randomly selected to learn the classification algorithm, and the OA
was measured over the complete validation set. With 10% of the training set,
an OA of 84.88% was achieved. Results over the same dataset in [90], but using
the complete training set were of 80.99% produced by a SVM with RBF kernel
and 85.22% with Extended Morphological Profiles. Comparing the results of
classifiers that use only spectral information, the FSMLR with RBF function
outperformed the SVM with RBF kernel in 4%, using only 10% of training
samples. It is also of value to note that the accuracy achieved by the FSMLR
with RBF function is competitive with the results from Extended Morphological

Profiles where spatial information is added to the process.

Training set size 10 20 40 60 80 100

FSMLR-RBF  86.08 89.82 92.23 93.29 94.27 94.84
SVM-RBF [90] 93.85 94.51 94.51 94.71 95.36 95.29

Table 6.22: OAs of the FSMLR classification with RBF function, using different

subsets of the training set, and results from [90].

The FSMLR classification method using RBF kernels, was also evaluated using
Dataset 1. Subsets with 10, 20, 40, 60, 80 and 100 samples of each class were
randomly selected from the training set, and the OA were calculated over the
complete test set. The results are presented in table 6.22. From that table it is
possible to observe that in this dataset, and regardless of the size of the training

set, the FSMLR classification does not outperform the SVM-RBF algorithm
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used in [90]. However, with the increase of training set, the differences between
both methods tends to decrease. It should be pointed out the high generalization
capacity of FSMLR: with only 40 training pixels per class, more than 90% OA

is reached.

6.3.2 FSMLR with Jeffreys Prior

As seen in previous experiments, the Jeffreys prior showed to be competitive
with Laplacian prior both in terms of OA and sparsity. Also, the Jeffreys prior

has the advantage of being a parameter free prior.

This section present results of OA over the same datasets tested in section 6.3.1.
The OA results are compared for both priors and also the analysis of the sparsity

achived by each prior is done both for h(x) linear and RBF.

6.3.2.1 h(z) Linear

When a linear function is adopted to h(x), tests with Jeffreys prior were carried
out with Dataset 1 and Dataset 3 considering the complete training set to
learn the classifier, as it was done in section 6.3.1. OA were measured in the

independent test set.

The FSMLR classification of Dataset 1 with the Jeffreys prior resulted in a
OA of 95.15%. Recall that the best OA achieved by the Laplacian prior in the
same conditions was 93.30%, for a A = 3 (see figure 6.11). So, in terms of OA,
the Jeffreys prior outperformed the FSMLR linear classification with Laplacian

prior and approximated the results presented in [90] with a SVM Poly kernel
(OA of 96.03%).

In respect to the classification methods sparsity, it is possible to observe in figure

6.12 the number of significant features selected by each prior. Note that A was
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set to 3 in the Laplacian prior. From this figure it is possible to observe the

-0.2 +  Laplacian prior| *
Jeffreys prior

0 20 40 60 80 100 120
Feature

Figure 6.12: Feature weights for Jefreys and Laplacian (A = 3) priors, with h(z)

linear.

higher sparsity achieved by the Jeffreys prior. The number of weights estimated
by the this prior with non-zero value is much less than by the Laplacian prior.
This capacity together with the fact that it does not require a search the best A,
and the good performance in terms of OA, make the FSMLR Linear classification

with Jeffreys prior an excellent option.

Considering the classification problem with FSMLR Linear and with Jeffreys
prior, Dataset 3 experiments were carried with the complete training set to
learn the classifier and the independent test set to evaluate the OA. The result
of this classification resulted in an OA of 96.95%. This result outperformed the
result achieved with the Laplacian prior in 2% and showed to be competitive
with the results from [90] (97%) achieved with methods that integrate spatial

information.

In terms of sparsity, comparing with the Laplacian prior with A = 7 (the pa-
rameter that returned the best OA), the Jeffreys prior once again gave solutions
with higher level of sparsity. Figure 6.12 shows the weights estimate for both

priors.
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Figure 6.13: Feature weights for Jefreys and Laplacian (A = 3) priors, with h(z)

linear.

Observing 6.12, it is easily noticeable the higher number of weights with non-
zero values for the Laplacian prior, revealing that this prior uses a higher number
of features to execute the classification process. This will evidently increase the
computational cost of this task. Moreover, this type of prior enforces the user to
define the sparseness parameter, which can become a computational demanding

task, specially when high dimension datasets are considered.

6.3.2.2 h(z) RBF

The Jeffreys prior was also used to classify when a RBF function is considered for
h(z). When a RBF function is used, it is necessary to define the o parameter.
This was done empirically through a 5-fold cross-validation procedure in the

training set.

Considering Dataset?2, and similarly to what was done in the Laplacian prior
case, only 10% of training set samples were used to learn the classifier. The OA
were measured in the test set. In this case, an OA of 83.78% was achieved. Recall
that in the Laplacian prior, the OA achieved was of 84.43%, using a A = 0.001.

Once more the Jeffreys prior proves to be competitive with the Laplacian one,
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without the need to define any parameter, and also outperformed the results
presented in [90] over the same dataset with the complete training set to learn

the classifier with a SVM with RBF kernel.

The analysis of sparsity can be done analyzing the number of features set to
zero by each prior. Figure 6.14 shows the weight values estimated by each prior.

Once more it is visible the higher degree of sparsity promoted by the Jeffreys
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Figure 6.14: Feature weights for Jefreys and Laplacian (A = 0.001) priors, with
h(z) RBF.

prior improving the generalization capacity. This property of the Jeffreys prior,
together with the high OA achieved and the fact that there is no need to seek

the best A, makes the Jeffreys prior a good choice.

6.3.3 Segmentation with MRF

This section presents the results of the segmentation procedure using a MRF.
The addition of spatial information is expected to improve the FSMLR clas-
sification results. However, it will also increase the complexity of the process,
and consequently the processing time. The segmentation process enforces the
definition of the parameter (3, that controls spatial homogeneity of the label

images. This parameter is adjusted empirically to maximize the OA measured
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in the test set. Segmentation and classification results will be compared as well

as a comparison with results from [90] will be addressed.

6.3.3.1 Laplacian and Jeffreys Prior with h(z) Linear

The performance of the segmentation method with linear function was analyzed
with Dataset 1 and Dataset 3 using the complete training set to learn the
segmentation algorithm, and the complete set of validation samples was used to

access the OA (Table 6.23).

Dataset 1 Dataset 3

MRF Seg Lap 98.18% 98.46%
MRF Seg Jef 98.05% 97.78%
Results from [90] 96.03% 97.27%

Table 6.23: OA of the MRF segmentation with linear mapping both for
Laplacian and Jeffreys prior, and the results from [90], using the complete

training set.

The results from [90] presented in table 6.23 for Dataset 1 were achieved with
a SVM with a Poly kernel. The results for Dataset 8 are a product of a MRF-
based spatial characterization where a discriminant analysis feature extraction
was applied before in order to increase spectral separability. The application of
the proposed segmentation method with a linear mapping managed to improve
the results under the same conditions, without any pre-processing to increase

the spectral separability, independently of the prior used.

The segmentation process implemented is dependent of the spatial parameter
(. Several values for this parameter were tested to access the one that retrieved
the best OA. Figure 6.15 shows the OA variation as function of the 3 parameter
for both datasets. As can be observed in both figures, the behavior of the
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Figure 6.15: Segmentation OA values as function of spatial continuity parameter

(8) for Jefreys and Laplacian priors, with h(z) linear.

segmentation algorithm depends on the value of 8 choosen, but the type of

prior used does not seem to highly influence the OA values.

To access the improvement promoted by the inclusion of spatial information
when small samples are considered, experiments were carried out for Dataset 1,
with 10%, 20%, 40%, 60% and 80% of each class from the training set. The OA
values were evaluated on the complete validation set and are presented in table
6.24.

Once more it is evident the high improvement promoted by the usage of spatial

Training set size ~ 10% 20% 40% 60% 80%
FSMLR Lap 85.21% 87.01% 88.25% 88.70% 89.38%
MRF Seg. Lap 94.03% 96.14% 95.85% 96.16% 96.75%

Table 6.24: OA of the FSMLR classification and MRF segmentation with linear

mapping, using different subsets of the training set.

information together with spectral information. The OA increase vary from 9%
to 7%. It is also important to note the high value of OA achieved with only 10%

of the training samples, which demonstrates the high generalization capacity of
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the method.

6.3.3.2 Laplacian and Jeffreys Prior with h(z) RBF

The segmentation problem when a RBF function is used in the estimation of
densities step is addressed with small subsets of training set from Dataset 1 and

with 10% of the training set from Dataset 2.

For both study cases several values of 3 were tested. The OA were evalu-
ated in the independent test set. Recall that the 3 parameter controls spatial
heterogeneity of label images. This parameter can be adjusted empirically
using for example a cross validation procedure, or it can be defined in order
to model the spatial dispersion of classes by the user, accordingly with the goal

of segmentation.

Figure 6.16 shows the segmentation of Dataset 2, for different values of # (8 = 1,

3.4 an 5), when a FSMLR with Laplacian prior was considered. As can be seen
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Figure 6.16: Segmentation maps of Pavia Dataset 2, with RBF function.

in the three images of this figure, higher values of 3 produce maps with a higher
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degree of homogeneity. This aspect can be of interest to the user, depending on

the requirements of the image segmentation task.

Regarding the OA achieved with the segmentation process for Dataset 2, observ-
ing figure 6.17 it is visible the higher performance of the segmentation procedure
for the Laplacian prior. Segmentation results in other datasets did not show such
high differences on the OA resulting from the use of different priors. This can
be due the low sparsity level considered in the Laplacian prior (A = 0.001).
Even so, results from the segmentation with Jeffreys prior are competitive with
the results from [90] with algorithms that include spatial information. From

this figure it is also visible the influence of the 8 parameter in the segmentation

process.
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Figure 6.17: Segmentation OA for Laplacian and Jeffreys prior, with RBF

function.

The MRF segmentation method proposed using RBF kernels in the class density
estimation was also evaluated using the Dataset 1. Subsets with 10, 20, 40, 60,
80 and 100 samples of each class were randomly selected from the training set,
and the OA were calculated over the complete test set. The results are presented

in table 6.25, where it is possible to observe that, regardless of the size of the
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training set, the MRF-Segmentation outperforms the SVM-RBF algorithm used
in [90]. Also, the high improvement in OA promoted by the segmentation process
should be noted analyzing the differences between the OA from the FSMLR
classification and the MRF based segmentation. They vary between 3% and

11%, being higher when small training samples are considered.

Training set size 10 20 40 60 80 100

FSMLR-RBF  86.08 89.82 92.23 93.29 94.27 94.84
MRFSeg RBF  97.04 96.33 96.54 97.37 97.97 97.90
SVM-RBF [90] 93.85 94.51 94.51 94.71 95.36 95.29

Table 6.25: OA (%) of the MRF segmentation, using different subsets of the

training set size, and results from [90].

The advantage of using a method that includes spatial information is well shown
by the comparison of the OA achieved by both methods: with only 90 samples,
the MRF based segmentation yielded an OA of 97.04%, while the SVM-RBF
with the complete training set (5536 samples) achieved an OA of 96.45%.

In the experiments presented it is evident the high performance of the MRF
segmentation process proposed. In all experiments the proposed segmentation
algorithm outperformed results form other methods. The FSMLR method
proposed for classification also performed well when compared to other methods.
The choice of the input function h(x) can have a significant influence in the
results of classification. Good results were achieved both with Linear and RBF
functions for h(z). The usage of a RBF has the disadvantage of having to tune

the o parameter, but it can improve the results.

Both Laplacian and Jeffreys priors produce similar results in the FSMLR clas-
sification, and good results in terms of sparsity. However, since the Laplacian

prior depends on the sparsity parameter A\, both values of spasrity and OA may
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suffer big changes depending on the value of A defined by the user. The search
of the best A can become a computational expensive task. The Jeffreys prior
returned competitive results with the Laplacian prior, and does not need any

parameter to be defined.

When the FSMLR method is incorporated in the segmentation process to esti-
mate the features densities, the final result of the segmentation does not seem
to depend on the type of prior, neither the type of function used in h(z). This
suggests the use of a linear function in h(x) together with the Jeffreys prior,
since it is a combination that does not use any parameter, resulting in a less

expensive computational process.



Chapter 7

Conclusions

Hyperspectral images provide detailed information about spectral signatures,
which would improve the discrimination between different land cover classes for
the production of land cover maps. However, the high dimensionality of this
type of data is a problem that pattern recognition algorithms have to deal with.
Learning high dimensional densities from a limited number of training samples
is a well known difficulty - the Hughes phenomenon.

In recent years, the wide availability of hyperspectral imagery, as well as other
types of high dimensional data, has leaded the development of classification al-
gorithms able to deal with high dimensional datasets. Discriminative algorithms
are among the state-of-art in supervised image classification. Their ability to
deal with small class distances, high dimensionality, and limited training samples
has proved to be successful. SVM are probably the most well known example of
a discriminative approach that retrieves very good results when applied to high
dimensional data. SVM have shown excellent results in terms of computational
cost, accuracy, robustness to noise and sparsity. When high dimensional datasets
are considered, one of the most important properties of a classification algorithm

is the capacity to produce sparse solutions. This will improve the generalization

123
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capacity of the classifier, as well as the computational cost. Despite all these
recent developments, classification algorithm for high dimensional datasets is

still an area of intensive research.

A part of this thesis focuses in this research area. It presents a classification
algorithm designed for efficiently deal with high dimensional datasets: the Fast
Sparse Multinomial Logistic Regression (FSMLR) method [14]. FSMLR is based
on SMLR [66], so it produces sparse solutions, but includes an iterative way
for estimating the weights which turns the SMLR a faster and more efficient
algorithm for the classification of hyperspectral images.

In addition to this improvement, this thesis also propose the use of an alternative
prior to the one used in the original SMLR method. SMLR uses the Laplacian
prior to improve the sparsity of the classifier. However, this prior needs the tun-
ing of the sparsity parameter A\. When dealing with high dimensional datasets
this process leads to high computational costs because it is done trough cross-
validation methods. To avoid this, the use of the Jeffreys prior was proposed
[17]. It is a parameter free prior which also gives good levels of sparsity, with

no need for search for the best parameter.

The FSMLR method was applied to several hyperspectral images to access
its efficiency when dealing with this type of data. Synthetic images and real
hyperspectral images collected from AVIRIS and ROSIS sensors were used.
When applying FSMLR classification algorithm one should choose the type of
input function used. In this work linear and RBF functions were considered.

As expected, results proved that although the complexity of a RBF function
may produce better OA than a linear input function, this complexity has the
disadvantage of increasing the computational cost. In addition, an RBF function
requires the tuning of a parameter which aggravates the algorithm time process-
ing. Despite this, experiments carried out in synthetic images, linear functions

achieved better results than with RBF functions, showing that simpler options
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may achieve good results.

The sparsity of the classifier is a characteristic of extreme importance when
dealing with high dimensional datasets. When using a Laplacian prior, the
sparsity is controlled by a parameter which should be tuned by the user. In the
experiments carried out, Jeffreys prior was able to produce competitive results
with the use of a Laplacian prior in terms of OA with two advantages: no need
for an intensive search for the sparsity parameter and retrieved higher levels of
sparsity for similar OA accuracies. Higher sparsity results in a lower number of
selected features necessary to the image classification which obviously reduces
the computational effort.

When different sizes of training sets were considered, it was observed that, as
expected, a higher number of training samples retrieved higher OA. However, in
some experiments the good generalization capacity of FSMLR was patent when

reduced size training sets achieved very good OA.

The use of benchmarked datasets allowed the comparison of the results achieved
by FSMLR classification with results from state-of-art classification algorithms.
Experiments with Indian Pines and Pavia datasets were performed in similar
conditions to the ones published in [26] and [90], respectively.

Experiments with Indian Pines dataset, showed the quite satisfactory perfor-
mance of FSMLR when compared to those from [26], where LDA and RBF
SVM were used. With a linear input function, our method outperformed LDA;
with a RBF function, FSMLR achieved approximately the same results that a
RBF SVM.

Experiments over the Pavia datasets with a linear input function and Laplacian
prior did not outperformed the results with a poly kernel presented in [90].
However, the results when using the Jeffreys prior revealed to be competitive
with the ones presented in [90]. When a RBF input function was considered,

the results from FSMLR outperformed the results with a RBF SVM from [90].
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We may therefore state that FSMLR performance competes with state-of-art
classification algorithms. Also, the use of the Jeffreys prior is desirable to the
use of Laplacian because it is able to produce sparse solutions with no need
for searching the optimum parameter and achieves similar OA to those from a

Laplacian prior.

A way of improving the performance of discriminative classifiers (and others)
consists in adding contextual information in the form of spatial dependencies,
resulting in a segmented image. Image segmentation has been a widely studied
problem in computer vision in several domains. Here again however, the appli-
cation of segmentation algorithms to hyperspectral data is often difficult by the
high dimensionality of the data. In this thesis we introduced a new Bayesian
segmentation approach for hyperspectral images [15]. The Bayesian Hyper-
spectral Image Segmentation with Discriminative Class Learning methodology
here presented enforces spatial dependencies by a Multi-Level Logistic (MLL)
Markov-Gibbs prior. This density favours labelling in which neighbouring sites
belong to the same class. The class densities were build on the FSMLR. Due
its computationally efficiency and the property of yielding nearly optimum
solutions, the a-Expansion graph cut based algorithm was adopted to compute

the MAP segmentation.

The Bayesian segmentation method was applied to the hyperspectral datasets
used to evaluate the FSMLR algorithm. In all cases, the use of contextual infor-
mation lead to a substantial improvement of the OA results achieved with the
discriminative classification. Very good values of OA were obtained (achieving
99% in some cases), which demonstrate the high potential of the use of both
spatial and spectral information.

Since the segmentation algorithm is based on the class densities learned by the
FSMLR, it was analysed the influence of the choice of the input function, as

well as the type of prior used. Generally it was observed that the type of prior
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considered (Laplacian or Jeffreys) does not greatly affects the OA segmentation
results. This is an important fact to have in consideration because, as seen in the
classification experiments, the Jeffreys prior conducts to good sparse solutions
with no need for searching the best sparsity parameter. Regarding the type of
input function used, RBF functions lead to higher values of OA.

The generalization capacity of the segmentation method should also be noticed:
even when small training sets were considered, the proposed segmentation algo-
rithm managed to achieve very good OA results.

When compared to recent techniques that also include spatial information along
with the spectral information, our segmentation algorithm showed to be very
competitive with them all. In fact the Bayesian segmentation method here
proposed outperformed the methods presented in [90].

Trough the segmentation process, a parameter that controls the spatial de-
pendency must be defined by the user. It was observed that this parameter
highly influences the final result of segmentation. Although this can lead to
extensive search for the parameter that retrieves higher OA, this flexibility of
the segmentation algorithm can be of interest to the user, depending on the type

of image to segment and the goal of segmentation.

As final remark, one should point out the good sparsity performance achieved
with the use of a Jeffreys prior. The fact that this prior do not need the tuning
for the parameter reduces the time processing of the classification, and therefore
the segmentation process, while at the same time is able to achieve very good
OA. Although the use of RBF function in the classification process could improve
the results, the difference between the use of a linear and a RBF function in the
segmentation process is not so significant. The final result of segmentation does
not seem to depend either from the type of prior used. Therefore, this suggest
the use of a linear input function together with a Jeffreys prior to achieve a

segmentation process with good results of OA with no need for selection of
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additional parameters besides the segmentation parameter.

This work presented contributions at several levels, including the proposal of
new Bayesian hyperspectral segmentation algorithm. However, there is still
room for improvement, namely by implementing accurate supervised learning
of the model parameters and the development of semi-supervised techniques
based on the FSMLR method proposed. Future work can be also developed to
include different neighbourhood systems and implement an automatic routine

to segment hyperspectral images.
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