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ABSTRACT
Many imaging techniques,e.g., interferometric synthetic
aperture radar (InSAR), and magnetic resonance imaging
(MRI), yield phase images. In these, generally, each pixel
retrieves the phase up to a modulo-2π rad ambiguity,i.e.,
the phase wrapped around the principal interval[−π π[.
Phase unwrapping (PU) is, then, a crucial operation to
obtain absolute phase, which is where physical informa-
tion relies on. If the phase difference between neighbor
pixels is less thanπ rad, then, phase unwrapping can be
obtained unambiguously. This, however, is not always
the case.E.g., in InSAR, where absolute phase is pro-
portional to terrain altitude, we often face neighbor phase
differences much larger thanπ rad. The PU problem is
even more challenging for noisy images. This paper pro-
poses a diversity approach, which consists of using two
(or more) images of the same scene acquired with dif-
ferent frequencies. Diversity grants an enlargement of
the ambiguity interval[−π π[, thus, allowing to unwrap
images with higher phase rates. Furthermore, this paper
presents a multi-resolution technique to make denoising.
We formulate the problem with amaximum a posteriori
- Markov random field (MAP-MRF) rationale, and apply
energy minimization techniques based on graph cuts. We
illustrate the performance of the algorithm by showing ex-
perimental results, and argue that it is, as far as we know,
state-of-the art.

1. INTRODUCTION

There are nowadays many applications based on phase
images,e.g., interferometric synthetic aperture radar (In-
SAR) [4], magnetic resonance imaging (MRI) [5], adap-
tive optics [6], vibration and deformation measurements
[7], and diffraction tomography [8]. InSAR is being suc-
cessfully applied,e.g., to the generation of digital eleva-
tion models (DEM), and in the monitoring of land subsi-
dence; among the many MRI applications, we emphasize
venography (angiography as well) [9] and tissues elastog-
raphy [10]; concerning adaptive optics, we point up ap-
plications in medicine and industry [11]; interferometry
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based vibration and deformation measurements is wide-
spread among metrology techniques; diffraction tomog-
raphy finds application in,e.g., geophysical subsurface
prospection and 3D microscopic imaging. In all of these
imaging systems, the acquisition sensors read only the co-
sine and the sine components of the absolute phase; that
is, we have access only to the phase modulo-2π, the so-
called interferogram. Besides the sinusoidal nonlinearity,
the observed data is corrupted by some type of noise. Due
to these degradation mechanisms, phase unwrapping is
known to be a very difficult problem. In fact, if the magni-
tude of phase variation between neighbor pixels is larger
thanπ, i.e., the so-called Itoh condition [12] is violated,
then the inference of the2π multiples is an ill-posed prob-
lem [13]. These violations may be due to undersampling,
discontinuities, or noise.

1.1. Contributions

The main contribution of this paper is to present an algo-
rithm that accomplishes both phase unwrapping and de-
noising.

Our approach is Bayesian. We adopt an observation
model that is2π-periodic, and discontinuity preserving
MRF priors for the absolute phase. A MAP criterion in-
fers the phase by exploiting graph-cuts based energy min-
imization techniques. The algorithm has two main steps:

1. Phase unwrapping: we input two (or more) differ-
ent frequency interferograms (of the same scene),
which provides an extension of the[−π π[ ambigu-
ity interval and, consequently, an increasing of the
phase rates that still allow unwrapping to be a well-
posed problem. This frequencydiversitytechnique
is put forward through a graph-cuts algorithm [14]
that minimizes a MRF composed of a sinusoidal
data term plus a non-isotropic total variation (TV)
prior [14].

2. Denoising: we achieve denoising by an iterativemulti-
resolutionMAP-MRF energy minimization graph-
cuts algorithm [15]. As in the previous step, (Phase
unwrapping), the data term is sinusoidal, while a
discontinuity preserving denoising prior is consid-
ered [15], [3].



1.2. Related work

Frequency diversity based PU algorithms are scarce. We
are aware only of [16], [17], and [18] published in 1994,
1998 and 2002, respectively. Regarding the first [16] it
proposes three very simple (and interesting) algorithms
that, nonetheless, are error prone. With respect to the sec-
ond [17], it is a multidimensional (accounting for multi-
frequency) version of the minimumL2 norm type of PU
algorithm [19], with relaxation to the continuum that is
well-known [19] to give rise to solving a Poisson equation.
The weaknesses of this approach are long-familiar, in par-
ticular the oversmoothing of high phase rate slopes and
discontinuities, which is further amplified by the proposed
previous low-pass filtering stage (see [20] for a deeper dis-
cussion on this problem). Concerning [18], it consists
of an algorithm based on a maximum likelihood estima-
tion technique, whose goal is to approximate the unknown
(true) surface by means of local planes. The approach
assures the uniqueness of the solution even accounting
for high phase rate slopes or discontinuities. However,
the global optimization required to compute the maximum
likelihood, by suggestion of the authors, is to be achieved
by simulated annealing, which is a (nowadays) too much
slow optimization technique to tackle this problem, for
which,e.g., graph-cuts techniques are much more suited.

In the field of phase unwrapping, we refer to [19] and
references therein. TheZ step ofZπM [20] and PUMA
[15] are phase unwrapping state-of-the-art algorithms. Re-
garding the former the present work extends it by allow-
ing a much wider family of MRF derived energies, which
brings discontinuity preservation ability by using non con-
vex pairwise interactions; with respect to the latter, the
present work is also an extension by either taking account
of data evidence and being capable of denoising. We refer
also the work in [21], from which we specially mention
the unique denoising performance.

With respect to the optimizations, we deal with multi-
labeling problems on energy (objective) functions having
unary (one variable, data dependence) and binary (two
variables, prior dependence) terms. Regarding this kind of
problems, we highlight the algorithms proposed in [22],
[23], [24], [25] and references therein; we note that al-
though the expansion moves algorithm [22] is particularly
successful in several applications, we found out not to be
in ours. Regarding binary-labeling problems, we point out
[26], [27], and references there presented.

2. PROPOSED FORMULATION

Let us consider the undirected graph(V , E) where the set
of nodesV represents image pixels and the set of edges
E represents pairs of neighboring pixels (horizontal and
vertical in our case).

2.1. Posterior density

We consider, as in,e.g., [20], the observation data model
to be given by (1)

z = ejFφ + n, (1)

whereF is a constant to which we attach the meaning of
frequency,φ is the absolute phase, andn a zero-mean,
circular, Gaussian noise. Again we refer to [20] to state
that the log-likelihood of the absolute phase,φ, given the
observed wrapped phase,ψ = angle(z), is, then, given by
(2)

f(φ|ψ) = −λ cos(ψ − Fφ) + c, (2)

whereλ ∝ |z|, andc is an irrelevant constant. In what fol-
lows we can takeλ = 1 without loss of generality. Con-
sidering also that the prior is a MRF, then the logarithm of
the posterior density is given by (3)

E(φ) ≡
∑

i∈V

− cos(ψi − Fφi)

︸ ︷︷ ︸

Data fidelity term

+µ
∑

(i,j)∈E

V (φi, φj)

︸ ︷︷ ︸

Prior term

,

(3)
whereφ = (φ1, φ2, . . . , φ|V|), ψ = (ψ1, ψ2, . . . , ψ|V|),
V is a, to be specified, potential and finally,µ is the prior
parameter that sets the relative weight between the data fi-
delity and the prior terms. We will now, in next section,
detain on the data fidelity term of (3), and succintly intro-
duce the frequency diversity notion.

2.2. Diversity

Several signal and image processing techniques employ
diversity, which consists of signaling some event or target,
e.g., imaging an object, by using diverse relevant parame-
ters. In this paper we consider frequency diversity which
is particularly used in various areas, such as,e.g., MRI,
echographic Doppler, weather radar, and InSAR.

Namely, we deal with two (for the sake of simplicity)
frequenciesF1 = p/q, F2 = r/s where{p, q, r, s} ∈ N

1.
Assuming that observations (1) are independent for each
frequency, the log-likelihood is given by (4)

f(φ|ψ1, ψ2) = − cos (ψ1 − F1φ) − cos (ψ2 − F2φ) ,
(4)

We have already alluded (Section 1.1) to the advantage
that frequency diversity gives in extending the[−π π[
ambiguity interval. Stating it more clearly, it is easy to
show that the sum of two cosine functions, having as in
(4) different frequenciesF1 = p/q andF2 = r/s, where
{p, q} , {p, r}, {q, s}, and{r, s} are coprime integers2, re-
sults in a third periodic function whose period isq × s;
as the initial functions do have periods of respectivelyq
ands, we conclude that the period is, in general, extended
and so the ambiguity reduced. Fig.1 illustrates this effect
by plotting the functionf(t) = cos(t) + cos(2/5 t), t ∈
[−8 8] with t in 2π rad units. It can be seen that the period
has been extended five times (the initial periods were2π
rad and5 × 2π rad). This “beat production”, well known
in wave physics, can also be understood by the Chinese
remainder theorem [28].

1Rigorously,F1 andF2 can be irrational as long as their quotient
is rational. However this does not make any loss of generality in what
follows.

2Two integer numbers are said to be coprime if their greatest common
divisor is the unity.



Figure 1. Ambiguity reduction by summing two periodic
functions: the beat effect.

It is a well known behavior,e.g., from wave phenom-
ena, that the greater the beat period extension, the smaller
the difference between global and local maxima. Fur-
thermore, it is also well known that beat period extension
brings noise amplification. This trade-off should then be
taken into account.

2.3. Phase unwrapping with diversity

Replacing the data fidelity term in (3) with that given by
(4), i.e., considering diversity, we obtain

E(φ) ≡
∑

i∈ν

− cos (ψ1i
− F1φi) − cos (ψ2i

− F2φi)

+ µ
∑

(i,j)∈E

V (φi, φj) , (5)

whereφ = (φ1, φ2, . . . , φ|V|),ψ1 = (ψ11
, ψ12

, . . . , ψ1|V|
),

ψ2 = (ψ21
, ψ22

, . . . , ψ2|V|
), V is the prior potential, and,

finally, µ is the regularization parameter that sets the rela-
tive weight between the data fidelity and the prior terms.

In this section we solve only the phase unwrapping
problem. So, by admitting a noiseless environment, we
may consider that the unwrapped (true) phaseφ is given
by:

F1φ = ψ1 + 2k1π, (6)

and
F2φ = ψ2 + 2k2π, (7)

for the two independent observations with frequenciesF1

andF2, respectively. For the sake of simplicity we can
deal with (6) only, and (5) turns3 into:

E(k) ≡
∑

i∈V

− cos

(

ψ2i
− F2

F1
(ψ1i

− 2k1i
π)

)

+ µ
∑

(i,j)∈E

V
(
ψ1i

− 2k1i
, ψ1j

− 2k1j

)
, (8)

3We could have dealt with both observations simultaneously.For
simplicity we do not.

with a correspondingly combinatorial optimization (mini-
mization) to be done on variablesk1i

.
We takeV

(
ψ1i

− 2k1i
, ψ1j

− 2k1j

)
= |ki − kj | the,

so-called, non-isotropic TV; in spite of such a potential be-
ing convex, which confers some optimization “easiness”
(see,e.g., [29] for a nice view on this “easiness” on com-
binatorial optimization problems), it still has some discon-
tinuity preservability properties.

We are aware of only three integer optimization algo-
rithms, that are able to provide a global minimum for a
posterior energy like (8), which is composed by a non-
convex data fidelity term and a convex prior potential.
Those algorithms were introduced in [30], [31], and [14].
Herein we refer to the last one [14], as it deals with our
non-isotropic TV prior. As long as the energy is a leve-
lable function, i.e., a function that admits a decomposition
as a sum on levels, of functions of its variables level-set
indicatrices at current level (see [14]), it is easy to build
a source-sink graph such that its maxflow is the sought
global minimum. For the sake of simplicity we do not
describe the above mentioned energy decomposition on
level-set dependent functions, as we will not describe in
detail the graph construction. In Fig. 2 (very similar to the
one presented in [14]) we represent a graph corresponding
to a toy example of an image with3 pixels and3 available
labels (ki values in our case). The source and the sink are
respectively denoted by s and t. We note that all nodes are
connected to the source s and to the sink t for although
all arcs are not depicted. In our experimental results we
have used the augmenting path type maxflow/min-cut al-
gorithm proposed in [1]. The worst case complexity for
augmenting path algorithms isO(n2m) [32], wheren and
m are the number of vertices and edges, respectively. How-
ever, in a huge array of experiments conducted in [1], au-
thors systematically found out a complexity that is infe-
rior to that of the push-relabel algorithm [33], with the
queue based selection rule, which isO(n

√
m). Thus, we

herein take this bound, which means a very low polyno-
mial complexity maxflow algorithm. We remark, further-
more, that is simple to prove that non-isotropic TV is a
levelable function.

2.4. Denoising with multi-resolution

For denoising we will take the potential (9) plotted in Fig.3

V (x) =

{
x2, |x| ≤ π

π2−0.1 |x|0.1
, |x| > π .

(9)

This potential is quadratic in an origin neighborhood
of radiusπ in order to model Gaussian noise, and almost
flat elsewhere to preserve discontinuities [34]. The radius
of π is chosen because we expect to get (most of the) noise
wrapped into the interval[−π π[ after the previous phase
unwrapping step. Anyway, the concepts next introduced
are still valid for a wide class of potential functions.

For the sake of clarity we refer back to the posterior
density expression (3), which writes energy asE ≡ E(φ).
Our goal is to computeφ∗ = argmin [E(φ)]. We note



Figure 2. Sketch of the graph used to perform phase un-
wrapping. Toy example.

Figure 3. Plot of the function whose analytical expression
is given by (9).

that the objective function,E(φ), is non-convex (both in
the data fidelity term and in the prior term), which makes
this optimization problem very difficult. Instead of solv-
ing this problem inR|V|, we discretize the domain ofE,
using a discretization interval∆. In doing this, we con-
verted the minimization inR|V| into a labeling (i.e., com-
binatorial) problem that, under given conditions, may be
solved efficiently by computing flows on graphs. Further-
more, we have chosen to make the denoising optimization,
using one frequency data only. We decided to perform this
way because by using the two frequencies the objective
function got a huge amount of local minima and, accord-
ingly, the problem got intractable. In doing this we are
already deciding for a sub-optimal solution.

A minimization on the discrete domain yielding a min-
imizer close to the one obtained in theR

|V|, suggests a
“small” discretization interval. On the other hand, small
values of∆ leads to huge configuration spaces and asso-
ciated computation burdens; furthermore it may favor the
probability of getting stuck in local minima. We circum-
vent this by adopting a multi-resolution strategy in which
the minimum ofE is searched for in a sequence of in-
creasing resolutions. To this end, let us definei ∈ ν, δi ∈
{0, 1}, and the sets

MU (φ′,∆) ≡
{

φ ∈ R
|ν| : φi = φ′i + δi∆

}

MD(φ′,∆) ≡
{

φ ∈ R
|ν| : φi = φ′i − δi∆

}

,

where∆ ∈ R.
Algorithm 1 shows the pseudo-code for our optimiza-

tion scheme(φ = {φi}); we emphasize thatE(φ) is a
function of the potentialV according to (8).

Our algorithm engages on a greedy succession of up
and down binary optimizations. The precision of the min-
imization,∆, starts with the value2π and ends with the
value2π/(2N) where N is a depth of resolution. We point
out that even if all the computations could have been done
with the highest∆ resolution level4 from the very be-
ginning, choosing this multi-resolution schedule increases
dramatically (a logarithmic improvement) the algorithm
speed.

To solve the binary optimizations shown in lines 4 and
12 of Algorithm 1, we use the graph-cuts technique pre-
sented in [29]. For the sake of simplicity we will not re-
peat here the graph construction, which is in the referred
work clearly presented, on which we compute the min-cut
(which is equal to max-flow as stated by Ford-Fulkerson
Theorem [35]) to obtain the desired optimization. We
further add that we have adopted a MM [36] technique
identical to the one we have applied in [15], to deal with
non-convex potentials, non-convexity giving rise to non-
regularity [29].

We should note that we do not have any guarantees of
reaching a global minimum with Algorithm 1. This is so

4As already mentioned above, it is not a good idea to start withthe
highest (finest) resolution, because that improves the possibility of get-
ting stuck on local minima



Algorithm 1 Denoising with multi-resolution.

Require: φ = ψ {Interferogram}, successup = false, suc-
cessdown = false

1: for ∆ = 2π ×
{
20, 2−1, . . . , 2−N

}
do

2: while (successup = false OR successdown = false)
do

3: if successup = falsethen
4: φ̂ = arg minφ∈MU (φ,∆)E(φ)

5: if E(φ̂) < E(φ) then
6: φ = φ̂
7: else
8: successup = true
9: end if

10: end if
11: if successdown = falsethen
12: φ̂ = arg minφ∈MD(φ,∆)E(φ)

13: if E(φ̂) < E(φ) then
14: φ = φ̂
15: else
16: successdown = true
17: end if
18: end if
19: end while
20: end for

because, with generality, we are dealing with both non-
convex data fidelity terms and prior terms. However, ex-
perimental results in a series of experiments on simulated
and real data have been systematically state-of-the art.

3. PROPOSED ALGORITHM

The previous sections culminate in our phase imaging al-
gorithm. It consists of a phase unwrapping stage and then
denoising. Algorithm 2 shows a simple two lines high
level pseudo-code of our phase imaging algorithm.

Algorithm 2 Phase imaging algorithm
1: Do phase unwrapping with diversity
2: Do denoising with multi-resolution

In the next section we show some relevant experimen-
tal results.

4. EXPERIMENTAL RESULTS

In this section, we briefly illustrate the performance of our
algorithm on two representative phase unwrapping plus
denoising problems.

Fig. 4 (a) displays an image,100 × 150 pixels, which
can be described as a sheared ramp whose maximum height
is 99 rad. Figs. 4 (b) and (c) show the corresponding
wrapped images (black corresponds to−π and white to
π), having Gaussian noise with standard deviationσ =
0.3162 rad corresponding to signal to noise ratio SNR=10
dB. Each one of the wrapped images is acquired with two
frequencies of, respectively,F1 = 1/1 andF2 = 7/8.
Fig. 4 (d) displays an image of the unwrapped sheared

ramp, and Fig. 4 (e) shows a corresponding3-D rendering.
Fig. 4 (f) shows a3-D rendering after the denoising step.
It is quite clear that our algorithm had a very good perfor-
mance at both phase unwrapping (perfect) and denoising.
We stress that the discontinuity created by the shear and
the noise allied to the inclination angle of the ramp, poses
a hard PU problem because several phase jumps of magni-
tude greater thanπ arise5. The diversity information plus
the discontinuity preserving potential play a crucial role
in the good performance. Figs. 4 (g) and (h) show the his-
tograms (the axis are in rad) corresponding to the surfaces
rendered in Figs. 4 (e) and (f), respectively. It is evident
the denoising accomplishment. The first row of table 1
presents the corresponding standard deviations (in rad) of
the error relative to the original image [Fig.4 (a)] as well
as the related improvement in signal to noise ratio (ISNR).
Still referring to the histograms, the one corresponding to
the noise image shows a multi modal shape. Besides the
central mode around zero, there are two modes around
−2π and2π respectively. Those correspond to “spikes”
as a result of the data observation model. After denoising
they do disappear.

Fig. 5 (a) displays an image,100 × 100 pixels, which
is given by a Gaussian having maximum height of50π
rad height, and standard deviations of10 pixels (horizon-
tal) and15 pixels (vertical). Figs. 5 (b) and (c) show the
corresponding wrapped images (black corresponds to−π
and white toπ), having a Gaussian noise with standard
deviationσ = 0.3162 rad corresponding to SNR= 10
dB. Each one of the wrapped images is acquired with two
frequencies of, respectively,F1 = 1/1 andF2 = 7/8.
Fig. 5 (d) displays an image of the unwrapped sheared
ramp, and Fig. 5 (e) shows a corresponding3-D render-
ing. Fig. 5 (f) shows a3-D rendering after the denois-
ing step. It is quite clear that our algorithm had an excel-
lent performance at phase unwrapping. We stress that the
high phase rates of the Gaussianper seposes a hard PU
problem because many phase jumps of magnitude greater
thanπ arise. This may be observed in the aliasing effects
that appear in Figs. 5 (b) and (c). The noise enlarges this
“jumps effect”. The diversity information is crucial to the
perfect phase unwrapping (with one source only, it is an
impossible task). Concerning the denoising step, the per-
formance is far from perfect. Even so, we can realize that
some denoising has occurred, since the surface becomes
smoother. However there are quite a lot of craters in the
surface. This, far from perfect, denoising is reflected in
Figs. 5 (h) and (i), which show the histograms (the axis
are in rad) corresponding to the surfaces rendered in Figs.
5 (e) and (f), respectively. Also the second row of table
1 presents the corresponding standard deviations (in rad)
of the error relative to the original image [Fig. 5 (a)], as
well as the related improvement in signal to noise ratio
(ISNR). In fact the prior that we have employed models
images that are region-wise-smooth, so this behavior was
expected. The approach presented in [21] is much more

5Even if the ramp inclination by itself, (not considering theshear),
does not generate, greater thanπ, in magnitude, jumps.



suitable in this case. We tried to improve the performance
on the noisy image in Fig. 5 (e). For that we simply ap-
plied a median filter (3×3 kernel). The resulting image is
rendered in Fig. 5 (g), whose corresponding histogram is
shown in 5 (h). It is evident (specially in the histogram)
that the median filter works better, in this very difficult
case, than our proposed denoising step. The standard de-
viation of the median filtered image is0.5201 rad which
confirms the visual inspection. Still referring to the his-
tograms, the one corresponding to the noise image shows
a multi modal shape. Besides the central mode around
zero, there are two modes around−2π and 2π respec-
tively. Those correspond to “spikes” as a result of the
data observation model. After denoising they do disap-
pear, although some new ones, more near to the origin,
do appear. After median filtering denoising, there remains
only one mode around the origin.

Table 1. Phase imaging performance.
std noisy std denoised ISNR

(rad) (rad) (dB)
Ramp 0.6542 0.2136 7.9
Gaussian 1.0114 0.8938 0.3756

5. CONCLUDING REMARKS

We have proposed a phase imaging algorithm, that makes
phase unwrapping with diversity and denoising with multi-
resolution. Our approach is a MAP-MRF one. We have
chosen both non-convex data fidelity and prior potential
terms, in the MAP-MRF, so there is no hope to find the
global minimum efficiently. Thus, we propose a sub-optimal
minimization based on graph cuts. Our approach inher-
its much of our previous work, PUMA [15], however we
do have extended it, by taking into account a data fidelity
term and denoising. This fact, plus very good results,
leads us to argue that our approach is state-of-the-art (as
far as we are aware). In the second experimental result,
Fig. 5, we have illustrated some difficulty in achieving
proper denoising. In particular, the multi-modal histogram
in Fig. 5 (i), stirs us to refine our noise model in the future,
by using,e.g., a Gaussian mixture rationale.
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tielles et leur signification physique,”Princeton Uni-
versity Bulletin, , no. 13, 1902.

[14] J. Darbon and M. Sigelle, “Image restoration with
discrete constrained total variation part ii: Levelable
functions, convex priors and non-convex cases fast
and exact optimization,”Journal of Mathematical
Imaging and Vision, pp. 277–291, 2006.

[15] J. Bioucas-Dias and G. Valadão, “Phase unwrapping
via graph cuts,” IEEE Transactions on Image Pro-
cessing, vol. 16, no. 3, pp. 698–709, March 2007.

[16] W. Xu, E. Chang, L. Kwoh, H. Lim, and W. Heng,
“Phase-unwrapping of sar interferogram with multi-
frequency or multi-baseline,” inProceedings of the



1994 International Geoscience and Remote Sensing
Symposium-IGARSS’94, 1994, vol. 2, pp. 730–732.

[17] M. Vinogradov and I. Elizavetin, “Phase un-
wrapping method for the multifrequency and multi-
baseline interferometry,” inProceedings of the
1998 International Geoscience and Remote Sensing
Symposium-IGARSS’98, Seattle, WA, USA, 1998,
vol. 2, pp. 1103–1105.

[18] V. Pascazio and G. Schirinzi, “Multifrequency insar
height reconstruction through maximum likelihood
estimation of local planes parameters,”IEEE Trans-
actions on Image Processing, vol. 11, pp. 1478–
1489, December 2002.

[19] D. Ghiglia and M. Pritt, Two-Dimensional Phase
Unwrapping. Theory, Algorithms, and Software,
John Wiley & Sons, New York, 1998.

[20] J. Dias and J. Leitão, “TheZπM algorithm for
interferometric image reconstruction in SAR/SAS,”
IEEE Transactions on Image Processing, vol. 11, pp.
408–422, April 2002.

[21] V. Katkovnik, J. Astola, and K. Egiazarian, “Noisy
phase unwrap for fringe techniques: adaptive lo-
cal polynomial approximations,” inProceedings of
the International Conference: True-Vision, Capture,
Transmission, and Display of 3D Video (3DTV-CON
2007), 2007.

[22] Y. Boykov, O. Veksler, and R. Zabih, “Fast approx-
imate energy minimization via graph cuts,”IEEE
Transactions on Pattern Analysis and Machine In-
telligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[23] V. Kolmogorov, “Primal-dual Algorithm for Con-
vex Markov Random Fields,” Tech. Rep., Microsoft
Research Technical Report, Cambridge, 2005.

[24] J. Darbon, Composants logiciels et algorithmes
de minimisation exacte d’énergies d́edíes au traite-
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