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Bayesian networks

Definition. Bayesian network
A n-dimensional Bayesian network (BN) is a triple B = (X, G, Θ) where:

X is a n-dimensional finite random vector where each random variable Xi ranged over
by a finite domain Di. Henceforward, we denote the joint domain by D =

∏n
i=1 Di.

G = (N, E) is a directed acyclic graph (DAG) with nodes N = {X1, . . . , Xn} and
edges E representing direct dependencies between the variables.

Θ encodes the parameters {θijk}i∈1...n, j∈DΠXi
, k∈Di

of the network, where

θijk = PB(Xi = xik|ΠXi
= wij),

ΠXi
denotes the set of parents of Xi in G, DΠXi

denotes the joint domain of the
variables in ΠXi

, xik is the k-th value of Xi and wij is the j-th configuration of ΠXi
.
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Bayesian networks

A BN defines a unique joint probability distribution over X given by

PB(X1, . . . , Xn) =
n
∏

i=1

PB(Xi|ΠXi
).

A BN encodes the independence assumptions over the component random variables
of X.

An edge (j, i) in E represents a direct dependency of Xi from Xj .

The set of all Bayesian networks with n variables is denoted by Bn.
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Learning Bayesian networks

Learning a BN:

The problem of learning a BN given data T consists on finding the BN that best fits the
data T .

In order to quantify the fitting of a BN a scoring function φ is considered.

Definition. Learning a Bayesian network
Given a data T = {y1, . . . ,yN} and a scoring function φ, the problem of learning a
Bayesian network is to find a Bayesian network B ∈ Bn that maximizes the value φ(B, T ).
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Hardness results

Cooper (1990) showed that the inference of a general BN is a NP-hard problem.
=⇒ APPROXIMATE SOLUTIONS

Dagum and Luby (1993) showed that even finding an approximate solution is NP-hard.
=⇒ RESTRICT SEARCH SPACE

First attempts confined the network to tree structures and used Edmonds (1967)
and Chow-Liu (1968) optimal branching algorithms to learn the network.

More general classes of BNs have eluded efforts to develop efficient learning
algorithms.

Chickering (1996) showed that learning the structure of a BN is NP-hard even for
networks constrained to have in-degree at most 2.

Dasgupta (1999) showed that even learning 2-polytrees is NP-hard.

Due to these hardness results exact polynomial-time bounded approaches for learning
BNs have been restricted to tree structures.
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Standard methodology

The standard methodology for addressing the problem of learning BNs became
heuristic search, based on scoring metrics optimization, c onducted
over some search space .

Search space:

Network structures

Equivalence classes of network structures

Orderings over the network variables

Algorithm to search the space:

Greedy hill-climbing

Simulated annealing

Genetic algorithms

Tabu search

Scoring functions are commonly classified into two main categories:

Bayesian scoring functions
Information-theoretic scoring functions
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Notation

ri number of states of the finite random variable Xi

xik k-th value of Xi

qi =
∏

Xj∈ΠXi

rj number of possible configurations of the parent set ΠXi
of Xi

wij j-thconfiguration of ΠXi
(1 ≤ j ≤ qi)

Nijk number of instances in the data T where the variable Xi takes its
k-th value xik and the variables in ΠXi

take their j-th configuration
wij

Nij =

ri
∑

k=1

Nijk number of instances in the data T where the variables in ΠXi
take

their j-th configuration wij

Nik =

qi
∑

j=1

Nijk number of instances in the data T where the variable Xi takes its
k-th value xik

N total number of instances in the data T
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Bayesian scoring functions

Compute the posterior probability distribution, starting from a prior probability
distribution on the possible networks, conditioned to data T , that is, P (B|T ).

The best network is the one that maximizes the posterior probability.

Since the term P (T ) is the same for all possible networks, in practice, for comparative
purposes, computing P (B, T ) is sufficient.

As it is easier to work in the logarithmic space, the scoring functions use the value
log(P (B, T )) instead of P (B, T ).
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BD scoring function

Heckerman, Geiger and Chickering (1995) proposed the Bayesian Dirichlet (BD)
score by making four assumptions on P (B,T ).

Notation.

ΘG = {Θi}i=1,...,n Encodes parameters of a BN B with underlying DAG G

Θi = {Θij}j=1,...,qi
Encodes parameters concerning only the variable Xi of X in B

Θij = {θijk}k=1,...,ri
Encodes parameters for variable Xi of X in B given that

its parents take their j-th configuration

Assumption 1. Multinomial sample
For any data T = {y1, . . . ,yN}, Bayesian network B, variable Xi of X in B and instance
yt ∈ T ,

PB(yti = xik|ytΠXi
= wij , Tt) = PB(Xi = xik|ΠXi

= wij) = θijk

for k = 1, . . . , ri and j = 1, . . . , qi, where Tt = {y1, . . . ,yt−1}.
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BD scoring function

Assumption 2. Dirichlet
Given a directed acyclic graph G such that P (G) > 0 then Θij is Dirichlet for all Θij in ΘG.

Assumption 3. Parameter independence
Given a directed acyclic graph G such that P (G) > 0 then

1. ρ(ΘG|G) =
∏n

i=1 ρ(Θi|G) (global parameter independence ), and

2. ρ(Θi|G) =
∏qi

j=1 ρ(Θij |G) for all i = 1, . . . , n (local parameter independence ).

Assumption 4. Parameter modularity
Given two directed acyclic graphs, G and G′, such that P (G) > 0 and P (G′) > 0, if Xi has
the same parents in G and G′, then

ρ(Θij |G) = ρ(Θij |G
′)

for all j = 1, . . . , qi.
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BD scoring function

Theorem. Heckerman, Geiger and Chickering (HGC95)
Under assumptions 1 through 4 we have that

P (B, T ) = P (B) ×
n
∏

i=1

qi
∏

j=1

(

Γ(N ′
ij)

Γ(Nij + N ′
ij)

×

ri
∏

k=1

Γ(Nijk + N ′
ijk

)

Γ(N ′
ijk

)

)

where Γ is the Gamma function and P(B) represents the prior probability of the network B.
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BD scoring function

The HGC95 theorem induces the Bayesian Dirichlet (BD) score :

BD(B, T ) = log(P (B)) +
n
∑

i=1

qi
∑

j=1

(

log

(

Γ(N ′
ij)

Γ(Nij + N ′
ij)

)

+

ri
∑

k=1

log

(

Γ(Nijk + N ′
ijk

)

Γ(N ′
ijk

)

))

.

The BD score is unusable in practice:

Specifying all hyperparameters N ′
ijk

for all i, j and k is formidable, to say the least.

There are some particular cases of the BD score that are useful...
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K2 scoring function

Cooper and Herskovits (1992) proposed a particular case of the BD score, called the
K2 score ,

K2(B, T ) = log(P (B)) +
n
∑

i=1

qi
∑

j=1

(

log

(

(ri − 1)!

(Nij + ri − 1)!

)

+

ri
∑

k=1

log(Nijk!)

)

,

with the uninformative assignment N ′
ijk

= 1 (corresponding to zero pseudo-counts).
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BDe scoring function

Heckerman, Geiger and Chickering (1995) turn around the problem of
hyperparameter specification by considering two additional assumptions: likelihood
equivalence and structure possibility .

Definition. Equivalent directed acyclic graphs
Two directed acyclic graphs are equivalent if they can encode the same joint probability
distributions.

Given a Bayesian network B, data T can be seen as a multinomial sample of the joint space
D with parameters

ΘD = {θx1...xn}xi=1,...,ri, i∈1...n

where θx1...xn =
∏n

i=1 θxi|Πxi
.

Assumption 5. Likelihood equivalence
Given two directed acyclic graphs, G and G′, such that P (G) > 0 and P (G′) > 0, if G and
G are equivalent then ρ(ΘD|G) = ρ(ΘD|G′).
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BDe scoring function

The skeleton of any DAG is the undirected graph resulting from ignoring the directionality
of every edge.

Definition. Complete directed acyclic graph
A directed acyclic graph is said to be complete if its skeleton is complete.

Assumption 6. Structure possibility
For any complete directed acyclic graph G, we have that P (G) > 0.

Tópicos Avançados – p. 16/48



BDe scoring function

Theorem. Heckerman, Geiger, Chickering (HGC95)
Suppose that ρ(ΘD|G) is Dirichlet with equivalent sample size N ′ for some complete
directed acyclic graph G in D. Then, for any Bayesian network B in D, Assumptions 1
through 6 imply

P (B, T ) = P (B) ×
n
∏

i=1

qi
∏

j=1

(

Γ(N ′
ij)

Γ(Nij + N ′
ij)

×

ri
∏

k=1

Γ(Nijk + N ′
ijk

)

Γ(N ′
ijk

)

)

where N ′
ijk

= N ′ × P (Xi = xik, ΠXi
= wij |G).

The equivalent sample size N ′ expresses the strength of our belief in the prior
distribution.
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BDe scoring function

The HGC95 theorem induces the likelihood-equivalence Bayesian Dirichlet (BDe)
score and its expression is identical to the BD expression.

The BDe score is of little practical interest:

It requires knowing P (Xi = xik, ΠXi
= wij |G) for all i, j and k, which might not be

elementary to find.
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BDeu scoring function

Buntine (1991) proposed a particular case of BDe score, called the BDeu score :

BDeu(B, T ) = log(P (B))+
n
∑

i=1

qi
∑

j=1



log





Γ( N′

qi
)

Γ(Nij + N′

qi
)



 +

ri
∑

k=1

log





Γ(Nijk + N′

riqi
)

Γ( N′

riqi
)







 ,

which appears when

P (Xi = xik, ΠXi
= wij |G) =

1

riqi

.

This score only depends on one parameter, the equivalent sample size N ′:

Since there are no generally accepted rule to determine the hyperparameters
N ′

x1...xn
, there is no particular good candidate for N ′.

In practice, the BDeu score is very sensitive with respect to the equivalent sample size
N ′ and so, several values are attempted.
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Information-theoretic scoring functions

Information-theoretic scoring functions are based on compression:

The score of a Bayesian network B is related to the compression that can be achieved
over the data T with an optimal code induced by B.

Shannon’s source coding theorem (or noiseless coding theorem) establishes the
limits to possible data compression .

Theorem. Shannon source coding theorem
As the number of instances of an i.i.d. data tends to infinity, no compression of the data is
possible into a shorter message length than the total Shannon entropy, without losing
information.

Several optimal codes asymptotically achieve Shannon’s limit:

Fano-Shannon code and Huffman code , for instance.

Building such codes requires a probability distribution over data T .
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Information-theoretic scoring functions

Information content of T by B:

The size of an optimal code, induced by the distribution B, when encoding T .

This value can be used to score the BN B.

L(T |B) = − log(PB(T ))

= −
n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk log(θijk)

= −
n
∑

i=1

qi
∑

j=1

Nij

ri
∑

k=1

Nijk

Nij

log(θijk).
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Information-theoretic scoring functions

Lemma. Gibb’s inequality
Let P (x) and Q(x) be two probability distributions over the same domain, then

∑

x

P (x) log(Q(x)) ≤
∑

x

P (x) log(P (x)).

Some observations from Gibb’s inequality:

When fixing the DAG structure of a BN B, L(T |B) is minimized when

θijk =
Nijk

Nij

.

L(T |B) is minimal when the likelihood PB(T ) of T given B is maximal.

The parameters of B that induces a code that compresses T the most is precisely the
parameters that maximizes the probability of observing T .
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LL scoring function

The log-likelihood (LL) score is defined in the following way:

LL(B|T ) =
n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk log

(

Nijk

Nij

)

.

The LL score tends to favor complete network structures and it does not provide an
useful representation of the independence assumptions of the learned network.

This phenomenon of overfitting is usually avoided in two different ways:

By limiting the number of parents per network variable.

By using some penalization factor over the LL score:
MDL/BIC (Occam’s razor approach)
AIC
NML (Stochastic complexity)
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MDL scoring function

The minimum description length (MDL) score is an Occam’s razor approach to
fitting, preferring simple BNs over complex ones:

MDL(B|T ) = LL(B|T ) −
1

2
log(N)|B|,

where

|B| =
n
∑

i=1

(ri − 1)qi

denotes the network complexity , that is, the number of parameters in Θ for the network
B.

The first term of the MDL score measures how many bits are needed to describe data
T based on the probability distribution PB .

The second term of the MDL score represents the length of describing the network B,
that is, it counts the number of bits needed to encode B, where 1

2
log(N) bits are used

for each parameter in Θ.

Tópicos Avançados – p. 24/48



AIC/BIC scoring function

The measure of the quality of a BN can be computed in several different ways:

φ(B|T ) = LL(B|T ) − f(N)|B|,

where f(N) is a non-negative penalization function.

If f(N) = 1, we have the Akaike Information Criterion (AIC) scoring
function :

AIC(B|T ) = LL(B|T ) − |B|.

If f(N) = 1
2

log(N), we have the Bayesian Information Criterion (BIC) score
based on Schwarz Information Criterion, which coincides with the MDL score.

If f(N) = 0, we have the LL score.
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NML scoring function

Recently, Roos, Silander, Konthanen and Myllym äki (2008) , proposed a new
scoring function based on the MDL principle.

Insights about the MDL principle:

To explain data T one should always choose the hypothesis with smallest description
that generates T .

What is a description and its length ?

First candidate: Kolmogorov complexity of T , that is, the size of the smallest
program that generates T written in a fixed universal programming language.

Kolmogorov complexity is undecidable.

The size of the description depends on the chosen programming language.
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NML scoring function

Given

data T , and

a set of probability distributions H that may be used to describe T ,

we take the length of describing T with H to be the sum L(T |H) + L(H), where

L(T |H) is the length (in bits) of the description of T when encoded with H, and

L(H) is the length of the description of H.

Defining L(H) has never been consensual:

Both BIC/MDL and AIC scores agree in setting L(T |H) = −LL(H|T ).

AIC sets L(H) = |B|.

BIC/MDL sets L(H) = 1
2

log(N)|B|.
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NML scoring function

Using |B| in the expression of the complexity of a BN is, in general, an error:

The parameters of a BN are conditional distributions. Thus, if there are probabilities in
Θ taking value 0, they do not need to appear in the description of Θ.

The same distribution (or probability value) might occur several times in Θ leading to
patterns that can be exploited to compress Θ significantly.

There have been attempts to correct L(H):

Most of the works are supported more on empirical evidence than on theoretical
results.

The main breakthrough in the community was to consider normalized minimum
likelihood codes .
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NML scoring function

The idea behind normalized minimum likelihood codes is the same of universal coding :

Suppose an encoder is about to observe data T which he plans to compress as much
as possible.

The encoder has a set of candidate codes H and he believes one of these codes will
allow to compress the incoming data significantly.

However, he has to choose the code before observing the data.

In general, there is no code which, no mater what incoming data T is, will always
mimic the best code for T .

So what is the best thing that the encoder can do?

There are simple solutions to this problem when H is finite, however, this is not the
case for BNs.
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NML scoring function

Recasting the problem in a stochastic wording:

Given a set of probability distributions H the encoder thinks that there is one
distribution H ∈ H that will assign high likelihood (low code length) to the incoming
data T of fixed size N .

We woukd like to design a code that for all T will compress T as close as possible to
the code associated to H ∈ H that maximizes the likelihood of T .

We call to this H ∈ H the best-fitting hypothesis .

We can compare the performance of a distribution H w.r.t. H ′ of modeling T of
size N by computing

− log(P (T |H)) + log(P (T |H′)).
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NML scoring function

Given a set of probability distributions H and a distribution H not necessarily in H, the

regret of H relative to H for T of size N is

− log(P (T |H)) − min
H∈H

(− log(P (T |H))).

In many practical cases, given a set of hypothesis H and data T , we are always able to find
the HH(T ) ∈ H that minimizes − log(P (T |H)):

The regret of H relative to H for T of size N can be rewritten as

− log(P (T |H)) + log(P (T |HH(T ))).
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NML scoring function

The worst-case regret of H relative to H for data of size N is given by

max
T :|T |=N

(− log(P (T |H)) + log(P (T |HH(T )))).

Definition. Universal distribution
Let H be a set of probability distributions for which it is always possible to find the distribution
HH(T ) ∈ H that minimizes − log(P (T |H)). The universal distribution relative to H for data
of size N is the probability distribution HH(N) such that

HH(N) = min
H

max
T :|T |=N

(− log(P (T |H)) + log(P (T |HH(T )))),

where the minimum is taken over all distributions on the data space of size N .
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NML scoring function

The parametric complexity of H for data of size N is

CN (H) = log





∑

T :|T |=N

P (T |HH(T ))



 .

Theorem. Shtakov (1987)
Let H be a set of probability distributions such that CN (H) is finite. Then, the universal
distribution relative to H for data of size N is given by

P NML
H (T ) =

P (T |HH(T ))
∑

T ′:|T ′|=N P (T ′|HH(T ′))
.

The distribution P NML
H (T ) is called the normalized maximum likelihood (NML)

distribution.
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NML scoring function

Given data T of size N and two sets of probability distributions H1 and H2, the MDL
principle states we should pick Hj that maximizes P NML

Hj
(T ), that is, we should pick Hj that

maximizes

log(P NML
Hj

(T )) = log(P (T |HHj(T ))) − CN (Hj)

= LL(HHj(T )|T ) − CN (Hj).

The quantity − log(P NML
Hj

(T )) is called the stochastic complexity of data T relative

to Hj .

Let BG denote the set of all BNs with network structure G. For a fixed a network structure G,
the NML score is defined as

NML(B|T ) = LL(B|T ) − CN (BG).
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NML scoring function

There is no hope for computing CN (BG) efficiently:

It involves an exponential sum over all possible data of size N .

It is not decomposable over the network structure.

Roos, Silander, Konthanen and Myllym äki (2008) , proposed to approximate
CN (BG) by considering only the contribution to the parametric complexity of the multinomial
distributions associated to each variable given a parent configuration:

fCT (BG) =
n
∑

i=1

qi
∑

j=1

CNij
(Mri

),

where Mri
is the set of all multinomial distributions with ri parameters.
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NML scoring function

The factorized Normalized Maximum Likelihood (fNML) score is given by:

fNML(B|T ) =
n
∑

i=1

qi
∑

j=1

(

ri
∑

k=1

Nijk log

(

Nijk

Nij

)

− CNij
(Mri

)

)

.

Computing CNij
(Mri

):

It seems exponential in Nij , since it involves an exponential sum over all possible data
of size Nij .

However, it was recently proposed by Konthanen and Myllym äki (2007) a
linear-time algorithm for computing the stochastic comple xity in the
case of Nij observations of a single multinomial random variable .

For that purpose an elegant recursion formula was proposed based on the
mathematical technique of generating functions .
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MIT scoring function

A scoring function based on mutual information, called mutual information tests (MIT)
score , was proposed by de Campos (2006) and its expression is given by

MIT(B|T ) =
n
∑

i=1
ΠXi

6=∅



2NI(Xi; ΠXi
) −

si
∑

j=1

χα,liσ∗

i
(j)



 ,

where I(Xi; ΠXi
) is the mutual information between Xi and ΠXi

in the network which
measures the degree of interaction between each variable and its parents.
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MIT scoring function

The second term is a penalization related to the Pearson χ2 test of independence:

α is a free parameter representing the confidence level associated with the
statistical test.

σ∗
i = (σ∗

i (1), . . . , σ∗
i (si)) denotes any permutation of the index set (1, . . . , si) of

the variables in ΠXi
= {Xi1, . . . , Xisi

} satisfying

riσ∗

i
(1) ≥ riσ∗

i
(2) ≥ · · · ≥ riσ∗

i
(si),

where rij represents the number of possible configurations when the parent set
of Xi is restricted only to Xj .

The number of degrees of freedom liσ∗

i
(j) is given by:

liσ∗

i
(j) =







(ri − 1)(riσ∗

i
(j) − 1)

∏j−1
k=1 riσ∗

i
(k) j = 2, . . . , si

(ri − 1)(riσ∗

i
(j) − 1) j = 1.
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Experiments

About the implementation:

We implemented the Chow-Liu tree learning algorithm and its extensions in
Mathematica 6.0, on top of the Combinatorica package (Pemmaraju and
Skiena, 2003) .

The package was extended with a non-recursive, and efficient, version of
Edmonds’ algorithm to build a maximal directed spanning tree of a strongly
connected weighted directed graphs.

A package to learn Bayesian network classifiers was implemented, and at the moment
it allows to learn an optimal TAN classifier for any score discussed in thi s
work .

The package also contains the entropy based discretization algorithm by
Fayyad and Irani (1993) to deal with continuous datasets.
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Experiments

Scores used in the experiments:

Information-theoretic scores: LL, BIC/MDL, NML and MIT with a 99% confidence level.

Bayesian scores: K2 and BDeu with equivalent sample sizes 1, 4 and 16.

The accuracy of each classifier is based on the percentage of successful predictions on
the test sets of each dataset:

Accuracy was measured via the holdout method for larger training sets, and via
5-fold cross-validation for smaller ones.

Accuracy is annotated by a 95% confidence interval.

Tópicos Avançados – p. 40/48



Experiments

Dataset n |DC | Train Test

letter 16 26 15000 5000

satimage 36 6 4435 2000

chess 36 2 2130 1066

vehicle 18 4 846 CV-5

diabetes 8 2 768 CV-5

soybean-large 35 19 562 CV-5

vote 16 2 435 CV-5

heart 13 2 270 CV-5

glass 9 7 214 CV-5

iris 4 3 150 CV-5

lymphography 18 4 148 CV-5

hepatitis 19 2 80 CV-5
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Experiments

Data set LL BIC/MDL NML MIT(0.99)

letter 78.48 ± 1.13 77.96 ± 1.15 75.02 ± 1.20 77.98 ± 1.15

satimage 78.55 ± 1.80 78.00 ± 1.81 78.00 ± 1.81 78.45 ± 1.80

chess 89.06 ± 1.87 88.03 ± 1.94 88.13 ± 1.93 88.03 ± 1.94

vehicle 67.69 ± 1.61 62.60 ± 1.67 63.07 ± 1.66 62.84 ± 1.66

diabetes 77.91 ± 1.50 77.91 ± 1.50 76.99 ± 1.52 76.99 ± 1.52

soybean-large 61.07 ± 2.06 84.29 ± 1.53 92.14 ± 1.14 88.39 ± 1.35

vote 92.17 ± 1.77 92.61 ± 1.73 95.21 ± 1.41 93.48 ± 1.63

heart 85.19 ± 2.16 85.19 ± 2.17 84.07 ± 2.22 84.07 ± 2.22

glass 93.81 ± 1.66 88.57 ± 2.20 95.24 ± 1.47 92.38 ± 1.83

iris 93.33 ± 2.03 92.00 ± 2.21 92.67 ± 2.12 93.33 ± 2.03

lymphography 79.31 ± 3.36 77.93 ± 3.44 77.24 ± 3.48 74.48 ± 3.62

hepatitis 95.00 ± 2.44 96.25 ± 2.12 93.75 ± 2.71 93.75 ± 2.71

Tópicos Avançados – p. 42/48



Experiments

Data set K2 BDeu(1) BDeu(4) BDeu(16)

letter 82.14 ± 1.06 82.25 ± 1.06 82.12 ± 1.06 82.20 ± 1.06

satimage 77.39 ± 1.83 77.39 ± 1.83 77.05 ± 1.83 77.25 ± 1.83

chess 88.50 ± 1.91 88.50 ± 1.91 88.50 ± 1.91 88.41 ± 1.91

vehicle 67.57 ± 1.61 67.93 ± 1.61 67.46 ± 1.61 68.17 ± 1.60

diabetes 77.65 ± 1.51 77.65 ± 1.51 77.65 ± 1.51 77.65 ± 1.51

soybean-large 72.66 ± 1.88 62.50 ± 2.05 62.32 ± 2.05 62.86 ± 2.04

vote 93.48 ± 1.63 93.91 ± 1.58 93.91 ± 1.58 93.91 ± 1.58

heart 84.07 ± 2.22 84.07 ± 2.22 84.07 ± 2.22 84.07 ± 2.22

glass 92.86 ± 1.78 93.81 ± 1.66 91.90 ± 1.88 91.90 ± 1.88

iris 92.67 ± 2.12 93.33 ± 2.03 92.67 ± 2.13 93.33 ± 2.02

lymphography 74.48 ± 3.62 74.48 ± 3.62 73.79 ± 3.65 73.10 ± 3.68

hepatitis 86.25 ± 3.85 83.75 ± 4.12 86.25 ± 3.85 85.00 ± 3.99

Tópicos Avançados – p. 43/48
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Conclusions

The results show that Bayesian scores are hard to distinguish, performing well for
large datasets.

The most impressive result was due to the NML score for the soybean-large dataset.

It seems that a good choice is to consider K2 for large datasets and NML for small
ones.

Tópicos Avançados – p. 48/48
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