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1 Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
2 Instituto de Telecomunicações, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

3 INESC-ID, R. Alves Redol 9, 1000-029 Lisboa, Portugal
{pedro.fale,alexandra.carvalho,susanavinga}@tecnico.ulisboa.pt

Abstract. Single-cell sequencing technology holds the promise of un-
ravelling cell heterogeneities hidden in ubiquitous bulk-level analyses.
However, limitations of current experimental methods also pose new ob-
stacles that prevent accurate conclusions from being drawn. To overcome
this, researchers have developed computational methods which aim at ex-
tracting the biological signal of interest from the noisy observations. In
this paper we focus on probabilistic models designed for this task. Par-
ticularly, we describe how variational inference constitutes a powerful
inference mechanism for different sample sizes, and critically review two
recent scRNA-seq models which use it.
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1 Scientific Background

Single-cell RNA-sequencing (scRNA-seq) has emerged in the last decade as a
key technology in using gene expression to study cell heterogeneity [1]. With
the obtained data, researchers can, for example, apply clustering algorithms to
identify cell types and find genes which are differentially expressed between two
conditions.

In scRNA-seq data, each observation is a cell and, for each cell, the expression
of all detected genes is measured through the set of all RNA molecules present,
i.e., its transcriptome. Specifically, each entry in the N × P data matrix, where
N is the number of cells and P the number of genes, contains the number of
mRNA molecules corresponding to gene p detected in cell n. Depending on the
experimental protocol and quality control pipelines, data set sizes may vary from
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hundreds to millions of cells [1] and from hundreds to tens of thousands of genes
sequenced.

Although increasingly available, scRNA-seq data suffer from multiple con-
founding factors which may hide the biological signal of interest from anal-
ysis. These include varying sequencing depths and mRNA capture efficiency
which lead to zero-inflated observations and library size (total number of mRNA
molecules detected per cell) dispersion, as well as batch effects [1]. Because of
this, applying generic computational methods for further downstream analyses,
such as dimensionality reduction, clustering, or differential expression, yields spu-
rious results. Indeed, while PCA may capture the existence of different clusters
of cells in a data set, its principal components are highly correlated with tech-
nical factors [2]. Researchers have thus developed methods to extract only the
biological signal of interest; the most commonly tackled issue is the unrealistic
abundance of zero counts, termed “dropouts”.

In this report, we focus on methods based on probabilistic models of scRNA-
seq. Probabilistic modelling [3] constitutes a powerful framework for the dis-
entanglement of multiple factors of variation in the stochastic generative pro-
cess underlying the data. In general, probabilistic scRNA-seq models assume a
lower-dimensional representation of the data, which is mapped into the observa-
tion space by some transformation, allowing for dimensionality reduction and a
dropout-inducing process. This framework is particularly powerful because, by
explicitly accounting for the different assumed factors of variation, it can be used
for multiple downstream tasks after fitting to the data.

Probabilistic models define a joint probability distribution p(X,Z) over the
observed data X and a set of latent variables Z. These encode structure in the
data, via some prior distribution p(Z), and are related to the observations via
the likelihood distribution p(X|Z). After defining such a model, inference of
the latent variables is made via their probability distribution conditioned on the
data, p(Z|X). This is called the posterior probability distribution and, according
to Bayes’ theorem, is given by

p(Z|X) =
p(X|Z)p(Z)

p(X)
. (1)

However, in general, for complex models, Eq. (1) can not be computed ana-
lytically. Approximating the posterior is thus the main computational challenge
in probabilistic modelling. The common approach for this task is to use Markov
Chain Monte Carlo sampling methods, with Gibbs sampling being the gold stan-
dard [3]. However, variational inference techniques are generally able to provide
similar performance at a possibly lower computational cost, making them more
suitable for large data sets.

In the following sections we describe two recent probabilistic models designed
for scRNA-seq data which use variational inference to infer their latent variables:
Probabilistic Count Matrix Factorization (pCMF) [4] and Single Cell Variational
Inference (scVI) [5]. While both use the same inference engine, the modelling
details of each allow for different techniques to be used, which we outline. The
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performance of both models is measured in terms of cell type separability in the
lower-dimensional latent space, and dropout imputation error. As a baseline for
comparison, we consider a state-of-the-art scRNA-seq probabilistic model, Zero
Inflated Factor Analysis (ZIFA) [6].

2 Materials and Methods

We first describe variational inference. Then we describe pCMF and scVI. In
particular, we aim at illustrating how the variational scheme allows for efficient
inference of complex probabilistic models, both in small N , large P data sets,
and the inverse.

2.1 Variational inference

In variational inference the true posterior p(Z|X) defined in Eq. (1) is approxi-
mated via a distribution q(Z;µ), which belongs to a certain family Q, over the
latent variables Z with free parameters µ [7]. These parameters are adjusted so
as to minimize some distance between q(Z) and p(Z|X). We thus turn inference
into an optimization problem. The most commonly used distance metric be-
tween these distributions is the Kullback-Leibler (KL) divergence. In this case,
the optimization problem becomes

q (Z) = argmin
q(Z)∈Q

KL(q(Z) ‖ p(Z|X)). (2)

The objective in Eq. (2) is not available because it depends on the posterior
distribution which we aim at approximating. However, we can re-write the KL
divergence in terms of a lower bound of p(X) which we call the Evidence Lower
BOund (ELBO). Minimizing the KL divergence is now achieved by maximizing
the ELBO:

q (Z) = argmax
q(Z)∈Q

ELBO (µ) = Eq [log(p(X,Z))]− Eq [log(q(Z;µ))] . (3)

This optimization is constrained not only by the family of distributions Q
we choose, but also by the widely used mean-field approximation, where we
assume each of the M latent variables to be independent from all the others
and governed by their own variational density [7]. This makes the ELBO a non-
convex function.

The most commonly used algorithm to find the µ that correspond to a local
maximum of the ELBO is coordinate ascent, which we refer in the following sec-
tions as CAVI (Coordinate Ascent Variational Inference). CAVI algorithms can
be easily derived for conditionally conjugate models. More recently, ELBO opti-
mization has been generalized into the wider class of non-conditionally conjugate
models, effectively allowing the design of more expressive models [7].



4 Ferreira et al.

2.2 Probabilistic Count Matrix Factorization (pCMF)

This model consists of a Bayesian matrix factorization method for count data. Its
latent variables are U, D and V. 4 U represents the cells in a lower-dimensional
space of size K < P , V is the map from U to the observation space, and D
models the occurrence of dropout in each observation.

By considering Gamma priors on U and V, pCMF models the over-dispersion
of the count data. D is given by a Bernoulli distribution. The model is repre-
sented graphically in Fig. 1 and defined by the generative process which Algo-
rithm 1 outlines. 5

Algorithm 1 Generative process for pCMF

For each cell n:
For each k, sample a latent factor:
Unk ∼ Gamma (αk1, αk2) .

For each gene p:
For each k, sample a factor load:
Vpk ∼ Gamma (βk1, βk2) .

For each cell n and gene p,
Sample dropout event:
Dnp ∼ Bernoulli (πp) .
Sample the observed count:
Xnp ∼ Poisson

(
(1−Dnp)UnV

T
p

)
.

Fig. 1: Graphical representation
of pCMF.

Because this model is conditionally conjugate (if we consider an auxiliary
variable, see [4] for details), the posterior can be approximated via a CAVI
algorithm.

While in traditional machine learning settings there are more observations
than features, and thus an un-regularized point estimate of the global variables
(commonly called “parameters”) is enough, most initial scRNA-seq data sets,
and the ones pCMF was designed for, are such that P � N . In these cases, the
number of global variables (Vpk) is larger than the number of local variables (Unk)
in the model, which makes correct estimation of the global variables difficult.
Thus the need for a Bayesian approach even for the global variables in this case.

However, CAVI requires the whole data set to compute each variational pa-
rameter update. As such, inference of pCMF on a data set with a much larger
number of cells would imply a great computational effort, due to the need to
infer a posterior over the global variables. In that case, it would suffice to use
point estimates for the global variables instead, for example in an Expectation-
Maximization algorithm.

4For brevity, here we do not consider the sparse loadings of the original model. In
our experiments the resulting performance did not change significantly.

5αk1,2, βk1,2 and πp are fixed hyperparameters which can be estimated in an
Expectation-Maximization scheme. See the original paper for details.
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2.3 Single Cell Variational Inference (scVI)

scVI models the distribution of observed counts as conditioned on: L, the vari-
ations due to capture efficiency and sequencing depth of each cell; W, the nor-
malized mean expressions; dropout events D; θ for gene-specific dispersion and
Z, a lower-dimensional space where biological variability is encoded. It can also
include the batch annotation of each cell in order to subtract batch effects from
the biological signal.

Additionally, scVI utilizes neural networks to specify non-linear transforma-
tions between latent variables. Notably, it associates the cells’ latent represen-
tations Z with the probability of dropout occurrence, encoded by a Bernoulli
distribution on D whose parameter is given by a neural network fD with out-
put in the [0, 1] interval. Another neural network fW is used to map from Z to
the original-dimensional space containing W, which is encoded by a Gamma-
distributed random variable. The generative process is described in Algorithm 2
and Fig. 2 presents the corresponding graphical model. 6,7

Algorithm 2 Generative process for scVI

For each cell n:
For each k, sample a latent factor:
Znk ∼ Normal (0, 1) .
Sample a cell-scaling factor:
Ln ∼ LogNormal

(
lµ, l

2
σ

)
.

For each cell n and gene p,
Sample mean expression:
Wnp ∼ Gamma (fW (Zn) , θp) .
Sample dropout event:
Dnp ∼ Bernoulli (fD (Zn)) .
Sample the observed count:
Xnp ∼ Poisson ((1−Dnp)LnWnp) .

Fig. 2: Graphical representation
of scVI.

Inference of scVI’s latent variables is performed using neural networks spec-
ifying the approximate posterior distributions q(Z) and q(L) (the “inference
networks” [8]), in which the other latent variables are integrated out. This al-
lows for inference to be reduced to optimizing the weights of the four neural
networks: fW , fD and q(Z), q(L) [5]. Unlike CAVI, this is a general mechanism
possible for models without conditional conjugacy. It also makes inference am-
menable to stochastic optimization, meaning global variables can be estimated
using small subsets of the data per iteration.

While the use of neural networks allows for great model expressiveness, the
typically large number of parameters to fit may render them inadequate for small

6In these simplified descriptions we ignore the batch annotation observations, for
brevity.

7lµ and l2σ are the observed log-library size mean and variance, respectively.



6 Ferreira et al.

sample sizes. In addition, the ability to approximate the true posterior is limited
by the flexibility of the inference networks.

3 Results

We test the methods described in Section 2 on real scRNA-seq data. For ZIFA
and scVI, we use the implementations provided by the authors with the original
publications. For pCMF we used our own implementation which allows for more
flexibility in the inference scheme (i.e., inclusion of sparsity and hyperparameter
estimation) than the one provided by the authors. We did, however, compare our
implementation with the original one, and the same results were obtained. In
our tests, we set the latent space dimensionality to K = 10 and apply all models
to two real data sets, whose main characteristics are summarized in Table 1.

Table 1: Statistics of the considered experimental data sets.
Data set # cells # genes # cell types % zeros

Pollen [9] 249 6982 11 25.33

Zeisel [10] 3005 558 7 29.01

Fig. 3 shows the evaluation of cluster separability in the latent space using
different metrics: Average Silhouette Width (ASW), Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI). For ARI and NMI, we used the K-
means clustering method to obtain partitions. Factor Analysis (FA) and ZIFA
perform similarly and always better than pCMF and scVI. pCMF is always worse
than scVI.

(a) (b)

Fig. 3: Boxplots of ASW, ARI and NMI scores for each method for five repetitions
on the (a) Pollen and (b) Zeisel data sets. Lines indicate no variation in the score
for the five runs.
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Following [5] we apply dropouts to 10% of the non-zero entries in each data
set and compare the values imputed by the model with the original ones. Fig. 4
shows the results for five repetitions of this process. In this sense, scVI is more
sensitive than pCMF to the change of proportion between cells and genes.

(a) (b)

Fig. 4: Boxplots for the median L1 distance between imputed and original values
for each scRNA-seq model fitted to five corrupted versions of the (a) Pollen and
(b) Zeisel data sets.

Finally, we aim at understanding the effect of cell-specific scalings in the
performance of scVI – its flexibility allows us to easily include them or not in the
inferred model. Table 2 shows the results for 5-fold cross-validation (CV) on the
Zeisel data set regarding imputation error and likelihood of held-out data. The
results show that including cell-specific scalings to account for capture efficiency
and sequencing depth improves the model fitness of scVI.

Table 2: Mean and standard deviation of scVI fitness metrics for a 5-fold CV on
the Zeisel data set.

Scalings Dropout imputation error Predictive log-likelihood

No 4.224 (0.433) -17245.777 (4750.590)

Yes 2.338 (0.105) -1515.624 (244.203)

4 Conclusion

The results show that the separability of clusters in the latent space achieved
by pCMF and scVI are not as good as the ones achieved by ZIFA or even
FA. However, while pCMF and scVI may not provide better separations than
FA and ZIFA, the explicit modelling of confounding factors guarantees that the
structure they infer in the latent space is more related with actual biology rather
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than technical variability. In this light, scVI is more powerful than pCMF: not
only does it account for more factors of variation, but it also achieves better
cluster separability.

The expressiveness of scVI also allows for better imputation of dropouts in
data sets with more cells than genes, such as Zeisel’s. In the reverse case, due
to scVI’s complexity, it is expected to underfit the data, resulting in higher
imputation errors (a behaviour also observed in [5] for a different data set). In
this case, additional gene filtering must be used before applying scVI.

One of the main modelling issues that allow the good results of scVI is the
use of cell-specific scalings. As shown in Table 2, their inclusion results in a large
increase in dropout imputation error and the likelihood assigned to held-out
data.

Additionally, leveraging the modelling power of scVI is easily done via the
flexible inference process based on inference networks. This proves the versatility
of this recent variational inference technique, which ultimately allows for models
to be designed without worrying about the inference process, thus allowing the
model designer to iterate faster over different model choices.
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