
Polynomial-time algorithm for learning optimal tree-augmented dynamic
Bayesian networks

José L. Monteiro
IDMEC

Instituto Superior Técnico
Universidade de Lisboa

jose.libano.monteiro@tecnico.ulisboa.pt

Susana Vinga
IDMEC

Instituto Superior Técnico
Universidade de Lisboa

susanavinga@tecnico.ulisboa.pt

Alexandra M. Carvalho
Instituto de Telecomunicações

Instituto Superior Técnico
Universidade de Lisboa

alexandra.carvalho@tecnico.ulisboa.pt

Abstract

The identification of conditional dependences in
longitudinal data is provided through structure
learning of dynamic Bayesian networks (DBN).
Several methods for DBN learning are con-
cerned with identifying inter-slice dependences,
but often disregard the intra-slice connectivity.
We propose an algorithm that jointly finds the
optimal inter and intra time-slice connectivity
in a transition network. The search space is
constrained to a class of networks designated
by tree–augmented DBN, leading to polynomial
time complexity. We assess the effectiveness of
the algorithm on simulated data and compare the
results to those obtained by a state of the art DBN
learning implementation, showing that the pro-
posed algorithm performs very well throughout
the different experiments. Further experimen-
tal validation is made on real data, by identify-
ing non-stationary gene regulatory networks of
Drosophila melanogaster.

1 INTRODUCTION

Longitudinal data, also known as multivariate time series in
the machine learning community, are obtained by conduct-
ing repeated measurements on a set of individuals. They
arise in several contexts, such as biomedical and clinical
studies, socio-economics and meteorology, and provide an
opportunity for studying changes over time. In multivari-
ate longitudinal data, each measurement or observation is
a vector of variables, whose joint evolution is subject of
analysis.

Multivariate longitudinal data can be modelled as a set of
n-dimensional observations of a stochastic process over T
sequential instants of time. The set of observations is ex-
pressed as {xi[t]}i∈I,t∈T ,, where I is the set of individu-
als being measured and T is the set of time indices. Thus,

xi[t] = (xi1[t], . . . , x
i
n[t]) ∈ Rn is a single observation of

n features, made at time t and referring to the individual i.

Observations are assumed to result from independent sam-
ples of a sequence of probability distributions {Pθ[t]}t∈T .
While these distributions may be time-variant, they are
considered constant across different individuals observed
at the same time, such that xi[t] ∼ Pθ[t] for all i ∈ I. If
the observations are also identically distributed over time,
that is, θ[t] = θ for all t ∈ T , the process is said to have a
stationary or time-invariant distribution (henceforth simply
referred to as a stationary process).

The identification of conditional independences in data
provides an approximation to estimating the underlying
probability distribution (Chow and Liu, 1968). Bayesian
networks (BN) are a popular machine learning tool for this
purpose, being able to represent complex processes that in-
volve uncertainty. Dynamic Bayesian networks (DBN) ex-
tend BN in order to model temporal processes and are usu-
ally defined according to strong simplifying assumptions
(Friedman et al., 1998; Murphy, 2002). A common premise
is to consider the first-order Markov property, which states
that attributes in time-slice t + 1 only depend on those in
time-slice t, but not on the past trajectory. Another fre-
quent assumption is to consider a stationary process, which
may be adequate in some cases, but does not hold in many
interesting scenarios.

1.1 RELATED WORK

Methods for learning stationary DBN are essentially simple
extensions of those employed to learn BN (Murphy, 2002).
A common approach consists in defining a scoring func-
tion, which measures a network’s goodness of fit to training
data, and a search procedure to generate networks (Hecker-
man et al., 1995). In general, obtaining an optimal network
is an NP-hard problem, because the search space is super-
exponential in the number of attributes (Chickering et al.,
1995).

Unlike the case of BN, however, it was recently shown
that learning the inter-slice structure of DBN does not have

to be NP-hard (Dojer, 2006). This new hardness result
is due to the relaxation of the acyclicity constraint on the
transition network, since the unrolled network is always
acyclic. In the same article, the author derived a polyno-
mial complexity bound in the number of variables when us-
ing the minimum description length (MDL) or the Bayesian
Dirichlet equivalence (BDe) scores. Relying on this result,
Vinh et al. (2011b) further proposed a polynomial-time al-
gorithm for learning optimal DBN using the mutual infor-
mation tests (MIT) score.

While there is plenty of literature regarding the process of
learning stationary first-order Markov networks, there are
only a few references to learning more general classes of
DBN. In fact, it was not until recently that some authors
started to relax the standard stationarity assumption under-
lying graphical models. The following paragraphs present
a brief review of such realizations.

The problem of model selection, that is, identifying a sys-
tem for probabilistic inference that is efficient, accurate and
informative is discussed in Bilmes (2000). With the pur-
pose of performing classification, the author proposes a
class of models where the conditional independences are
determined by the values of certain nodes in the graph,
instead of being fixed. This is accomplished by extend-
ing hidden Markov models (HMM) to include dependences
among observations of different time-slices. The idea of a
network whose edges can appear and disappear is further
explored by other authors in a temporal context to model
non-stationary processes.

An extension of the traditional discrete DBN model is de-
fined in Robinson and Hartemink (2010), where an initial
network of dependences and a set of incremental changes
on its structure are learnt. The authors assume that the pro-
cess is piecewise-stationary, having the number and times
of the transitions (change points) to be estimated a poste-
riori. Prior knowledge regarding both the initial structure
and the evolutionary behaviour of the network can be in-
corporated. By considering conjugate Dirichlet priors on
the parameters, which are assumed to have a multinomial
distribution, the marginal likelihood is computed exactly,
resulting in the BDe metric. The authors extend this metric
to incorporate the changes introduced by their new model.

The same approach is considered in Dondelinger et al.
(2010), but concerning continuous data. The authors also
differentiate the penalties for adding and removing edges in
a network and allow different nodes to have distinct penalty
terms, instead of a single hyperparameter for penalizing
disparities between structures.

In more recent work, Grzegorczyk and Husmeier (2012)
argue that there should be a trade-off between the often
unrealistic stationarity assumption, modelled with constant
parameters, and the opposite case of complete parameter
independence over time, ignoring the evolutionary aspect

of the process. They acknowledge, however, that the latter
case, which is considered in Dondelinger et al. (2010) and
Robinson and Hartemink (2010), has the advantage of al-
lowing the computation of the marginal likelihood in closed
form. The authors introduce a scheme for coupling the pa-
rameters along time-slices, although keeping the network
structure fixed.

Regarding undirected graphical models, Kolar et al. (2010)
propose two methods for estimating the underlying time-
varying networks of a stochastic process. They model
each network as a Markov random field (MRF) with bi-
nary nodes. The first method assumes that the parameters
change smoothly over time whereas the second considers
piecewise constant parameters with abrupt changes. In both
approaches, the estimator for the parameters is the result
of a l1-regularized convex optimization problem. These
methods, however, only capture pairwise undirected rela-
tions between binary variables, resulting in a model which
is far from being generally applicable.

1.2 OUR APPROACH

The algorithm we propose falls under the search and score
paradigm. Many software implementations for learning
DBN are concerned with identifying inter-slice depen-
dences, but disregard the intra-slice connectivity or assume
it is given by some prior network and kept fixed over time
(Dojer et al., 2013; Murphy, 2001; Vinh et al., 2011a). We
instead suggest an algorithm that simultaneously learns all
these dependences.

As a consequence of considering intra-slice edges in the
proposed algorithm, the relaxation of the acyclicity con-
straint proposed in Dojer (2006) no longer applies, and
obtaining an optimal network becomes NP-hard. We ap-
proach this problem by limiting the search space to tree-
augmented networks, that is, networks whose attributes
have at most one parent in the same time-slice. This re-
striction does not prevent an attribute to have several par-
ents from preceding slices, and also accounts for the al-
gorithm’s polynomial time complexity in the number of at-
tributes. Moreover, even though tree structures appear to be
a strong constraint, they have been shown to produce very
good results in classification tasks, namely within the tree
augmented naive Bayes (TAN) method (Friedman et al.,
1997).

The remaining of the paper is organized as follows. Sec-
tion 2 formally defines BN, provides a theoretical overview
on learning this class of networks and introduces DBN by
extension. Section 3 describes the proposed DBN structure
learning algorithm and analyses its time complexity. Sec-
tion 4 assesses its performance on simulated data and real
data. Section 5 presents the conclusions of this work.

2 THEORETICAL BACKGROUND

A BN is a graphical representation of a joint probability
distribution over a set of random variables (Pearl, 1988). It
is defined as a triple B = (X, G,θ), where:

• X = (X1, . . . , Xn) is a random vector. Discrete ran-
dom variables with a finite domain are considered;

• G = (X, E) is a directed acyclic graph (DAG) whose
nodes are the elements ofX and edgesE specify con-
ditional dependences between the variables: each Xi

is independent of its non-descendants given its parents
pa(Xi) in G;

• θ = {θijk} is a set of parameters, specifying the local
probability distributions of the network via

θijk = PB(Xi = xik | pa(Xi) = wij), (1)

where i ∈ {1, . . . , n}, j ∈ {1, . . . , qi} and k ∈
{1, . . . , ri}. ri is the number of discrete states of Xi.
The set of possible configurations of pa(Xi), i.e., the
set of different combinations of values that the parents
of Xi can take, is denoted by {wi1, . . . , wiqi}, where
qi =

∏
Xj∈pa(Xi)

rj is the number of all possible con-
figurations.

A BN B defines a joint probability distribution overX:

PB(X1, . . . , Xn) =

n∏
i=1

PB(Xi | pa(Xi)). (2)

The problem of learning a BN, given a dataset compris-
ing instances of X , can be stated as finding the structure
(DAG) and parameters that best match the training data.
When measuring the goodness of fit of a network B to data
D by means of a scoring function φ, learning a BN consists
of maximizing φ(B,D) over the space of all networks with
n attributes.

A decomposable scoring function can be expressed as a
sum of local terms, each depending only on a node and
its parents:

φ(B,D) =

n∑
i=1

φi(pa(Xi), D). (3)

Decomposability simplifies the process of calculating
scores and provides an efficient way of evaluating incre-
mental changes on a network.

The log-likelihood (LL) is a decomposable score which
favours networks that are more likely to have generated
the data. For a fixed structure G, assuming an underlying
multinomial distribution, the network parameters are deter-
mined by maximum-likelihood estimation (MLE):

{θ̂ijk = P̂D(Xi = xik | pa(Xi) = wij) =
Nijk

Nij
} (4)

where P̂D is the distribution induced by the observed fre-
quency estimates, Nijk is the number of instances where
Xi takes its k-th value xik and the variables in pa(Xi)
take their j-th configuration wij , and Nij is the number of
instances where the variables in pa(Xi) take their j-th con-
figuration wij notwithstanding the value of Xi. Since the
parameters are unambiguously found for a fixed network
structure, the LL criterion depends only on the network G.
Taking into account Eq. (2), and assuming that instances
of D are independent and identically distributed (i.i.d.), the
LL scoring function is expressed (Heckerman et al., 1995)
as

φLL(B,D) = logP (D | B)

=

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
.

(5)

The minimum description length (MDL) score is an exten-
sion of the LL criterion, including a term for penalizing
complex structures:

φMDL(B,D) = φLL(B,D)− 1

2
log(N)|B|, (6)

where N is the number of samples in D and |B| denotes
the number of parameters of the network, given by:

|B| =
n∑

i=1

(ri − 1)qi. (7)

While a BN defines a joint probability distribution over a
fixed set of variables, a DBN extends this representation
to model temporal processes (Friedman et al., 1998). Let
X = (X1, . . . , Xn) be a random vector, composed by the
attributes that the are changed by some process. Further-
more, let X[t] = (X1[t], . . . , Xn[t]) denote the instantia-
tion of the attributes at discrete time t ∈ N. A DBN en-
codes the joint probability distributions over all possible
trajectories of a process.

The first-order Markov property states that future values
only depend on present ones, not on the past trajectory, s.t.
P (X[t + 1] | X[0] ∪ · · · ∪X[t]) = P (X[t + 1] | X[t]).
A relaxation of this assumption is the higher-order Markov
property, where nodes can have dependences on an arbi-
trary (but fixed) number of previous time-slices.

A non-stationary first-order Markov DBN describing a
temporal process over T time-slices consists of:

• a prior networkB0, which specifies a distribution over
the initial statesX[0];

• a set of transition networks Bt+1
t over the variables

X[t] ∪X[t+ 1], specifying the state transition prob-
abilities, for 0 ≤ t < T .

A stationary network contains only one prior network and
one transition network, being the latter unrolled over time.

Learning DBN typically refers to the transition network(s),
as learning the prior network can be done directly using BN
methods. Learning a transition network has the additional
requirement that edges between slices must flow forward in
time.

3 PROPOSED METHOD

The proposed algorithm is based on learning tree-like
Bayesian networks. The Chow-Liu algorithm finds a tree
with maximum mutual information (Chow and Liu, 1968),
or, equivalently, a tree with maximum LL score. The al-
gorithm works as follows: (i) a complete undirected graph
weighted with the mutual information between each pair of
nodes is built; (ii) an undirected spanning tree is extracted;
and (iii) the optimal branching is retrieved by choosing an
arbitrary node as the tree root and then setting the direction
of all edges to be outward from it.

It was shown that the Chow-Liu algorithm can be adapted
to use any decomposable scoring criterion φ (Heckerman
et al., 1995). In this case, the weight of an edgeXj → Xi is
assigned as φi({Xj}, D)− φi({}, D), expressing the con-
tribution of the edge, as measured by φ, to the total network
score. If φ is score-equivalent, the weights of the edges
Xj → Xi andXi → Xj are the same, and so an undirected
spanning tree is enough to retrieve the optimal branching.
However, if the score is not score-equivalent, Edmond’s al-
gorithm (Edmonds, 1967) needs to be used to find the max-
imum branching from a complete directed weighted graph
(Heckerman et al., 1995).

In the temporal domain, nodes in X[t + 1] can also have
parents from previous time-slices. Our approach for learn-
ing DBN jointly learns inter and intra time-slice depen-
dences. We propose to learn a tree network structure for the
intra-slice dependences while limiting the number of par-
ents from the preceding time-slices. That is, for each node
in the current time-slice t+1 we allow one parent from the
same time-slice (with the exception of the root node) and
at most p parents from the preceding time-slices. We call
the resulting transition network structure a tree-augmented
DBN (tDBN). As we shall see next, the weight of an edge
Xj [t+ 1]→ Xi[t+ 1] will account for the contribution of
inter and intra-slice parents simultaneously. Therefore, due
to inter-slice parents, the weights Xj [t + 1] → Xi[t + 1]
and Xi[t + 1] → Xj [t + 1] are, in general, not the same.
This forces us to resort to Edmond’s algorithm.

3.1 OPTIMAL TREE-AUGMENTED DBN
STRUCTURE LEARNING

Considering, for the sake of simplicity, the first-order
Markov DBN paradigm, parents from the past can only be-

long to the preceding slice. Let P≤p(X[t]) be the set of
subsets of X[t] of cardinality less than or equal to p. If
a node in X[t+ 1] is limited to having at most p parents
from the past, its set of parents must belong to P≤p(X[t]).
The optimal tDBN structure learning algorithm proceeds as
follows.

First, for each node Xi[t + 1] ∈ X[t + 1], the best score
and the set of parentsXps[t] in P≤p(X[t]) that maximizes
it are found. This optimization is formally expressed as

si = max
Xps[t]∈P≤p(X[t])

φi(Xps[t], D
t+1
t), (8)

where φi denotes a local term of a decomposable scoring
function φ and Dt+1

t is the subset of observations of D
concerning the time transition t→ t+1. Then, also allow-
ing one parent from the current time-slice, for each edge
Xj [t+1]→ Xi[t+1], the best score and the set of parents
from the past that maximizes it are also found:

sij = max
Xps[t]∈P≤p(X[t])

φi(Xps[t]∪{Xj [t+1]}, Dt+1
t). (9)

A complete directed graph with nodes in X[t+ 1] is built,
being the weight of each edge Xj [t + 1] → Xi[t + 1] as-
signed as

eij = sij − si, (10)

which expresses the gain in the total network score by in-
cluding Xj [t + 1] as a parent of Xi[t + 1], as opposed
to leaving Xi[t + 1] only with parents in X[t]. In gen-
eral, eij 6= eji, and therefore a directed spanning tree must
be found. Thus, to obtain the t → t + 1 transition net-
work structure, the Edmonds’ algorithm for finding a max-
imum branching (Edmonds, 1967) is applied. The resulting
directed tree immediately provides the network intra-slice
connectivity (in t+1). In addition, for all the nodes except
the root, their set of parents from the preceding time-slice is
the solution for the optimization problem in Eq. (9). Sim-
ilarly, the root node’s parents are given by the solution for
the problem in Eq. (8).

The described procedure can jointly obtain the intra and
inter-slice connectivity in a transition network. By repeat-
edly applying it to all the available time transitions, it is
possible to retrieve the structure of a tree-augmented non-
stationary first-order Markov DBN. A global view of this
method is presented in Algorithm 1.

Theorem 1. Algorithm 1 finds an optimal tDBN under a
given decomposable scoring function.

Proof. Let B be an optimal tDBN and T be the tree struc-
ture of B accounting only for the intra-slice dependences.
Due to the optimality of B, its overall score is equal to

sR +
∑

Xj [t+1]→Xi[t+1]∈T

sij ,

Algorithm 1: Optimal non-stationary first-order Markov
tDBN structure learning
Input: X: the set of network attributes;

D: dataset of longitudinal observations over T
time-slices;
φ: a decomposable scoring function

Output: A tree-augmented DBN structure
1 For each transition t→ t+ 1 :
2 Build a complete directed graph inX[t+ 1]
3 Calculate the weight of all edges and the optimal set of

parents of all nodes (Algorithm 2)
4 Apply a maximum branching algorithm
5 Extract transition t→ t+ 1 network using the

maximum branching and the optimal set of parents
calculated in Algorithm 2

6 Collect transition networks to obtain DBN structure

according to Eq. (8) and Eq. (9), whereXR is the root node
of T .

Consider the constant K =
∑

i si. Finding an optimal
tDBN for a given score φ is the same as finding the optimal
tDBN up to the constant K; note that si does not depend
on the structure T , nor B. By subtracting K to the score of
B we obtain ∑

Xj [t+1]→Xi[t+1]∈T

eij ,

according to Eq. (10). Observe that an optimal branching of
the complete directed graph, where each edge Xj [t+1]→
Xi[t + 1] is weighted with eij , is precisely T . Therefore,
due to the soundness of Edmonds’ algorithm, the output of
Algorithm 1 is T , from which B can be recovered.

3.2 COMPLEXITY ANALYSIS

The derivation of a complexity bound on the running time
of Algorithm 1 is presented in the following.

Theorem 2. The time complexity of Algorithm 1 is polyno-
mial in the number of attributes n, linear in the the number
of observations N , and exponential in the number of par-
ents p.

Proof. For each transition, the step of determining the edge
weights and optimal sets of parents takes the most number
of operations and determines the algorithm’s growth rate.
The iterative process starting at line 11 in Algorithm 2 is
the most expensive overall. It calculates the weights for
all edges in a complete graph with n nodes, which requires
O(n2) iterations. For any edge, a score is evaluated for
each possible set of parents in the preceding time-slice. The
total number of parent sets is given by:

|P≤p(X[t])| =
p∑

i=1

(
n

i

)
<

p∑
i=1

ni ∈ O(np). (11)

Algorithm 2: Determining edge weights and optimal sets
of parents (first-order Markov)
Input: X[t],X[t+ 1]: sets of n nodes from two adjacent

time-slices;
p: upper bound on the number of parents from
time-slice t;
Dt+1

t : dataset of observations concerning the time
transition t→ t+ 1;
φchild[t+1](parents, dataset): a local term of φ

Output: E[n×n]: edge weights matrix;
parentsPastSlice[n]: optimal set of parents from
time-slice t;
parentsAllSlices[n×n] : optimal set of parents
from time-slices t and t+ 1

1 allParentSets← P≤p(X[t])
2 For each Xi[t+ 1] :
3 bestScore← −∞
4 For eachXps[t] ∈ allParentSets :
5 currentScore← φi(Xps[t], D

t+1
t)

6 If bestScore < currentScore :
7 bestScore← currentScore
8 parentsPastSlicei ←Xps[t]

9 For each Xj [t+ 1] :
10 Eij ← −bestScore
11 For each Xi[t+ 1] :
12 For each Xj [t+ 1] :
13 bestScore← −∞
14 For eachXps[t] ∈ allParentSets :
15 currentScore

← φi(Xps[t] ∪ {Xj [t+ 1]}, Dt+1
t)

16 If bestScore < currentScore :
17 bestScore← currentScore
18 parentsAllSlicesij ←Xps[t]

19 Eij ← Eij+ bestScore

For calculating each score, all different network configu-
rations must be considered. Assuming that r is the max-
imum number of discrete states a variable can take, and
that a variableXi[t+ 1] has p+ 1 parents (one inX[t+ 1]
and p in X[t]), there are O(rp+2) different configura-
tions. Each configuration needs to be counted over a dataset
containing |Dt+1

t | observations, which can be stored in
a |Dt+1

t | × 2n sized matrix, thus requiring O(|Dt+1
t |n)

comparisons. Taking into account all the internal loops,
the complexity of the outer cycle is O(np+3 rp+2 |Dt+1

t |).

The efficient implementation of Edmonds’ algorithm de-
scribed in (Tarjan, 1977) has quadratic complexity in the
number of nodes, hence being irrelevant to the overall
bound. Algorithm 1, which learns a network structure for
each of T time transitions, admits a worst-case complexity
ofO(np+3rp+2N), whereN = |D| =

∑T−1
t=0 |D

t+1
t |.

3.3 EXTENSIONS TO STATIONARITY AND
HIGHER-ORDER MARKOV

Algorithm 1 was presented in its non-stationary first-order
Markov form. Nonetheless, adaptations for stationary or
higher-order Markov processes are trivial and can be con-
cisely described.

A stationary version of Algorithm 1 does not contain the
for loop starting at line 1, because only one iteration is
needed to find one transition network. In Algorithm 2, the
entire dataset D is used in each score evaluation. Over-
all, since the number of examinations of each observation
for learning the DBN structure is the same as in the non-
stationary version, the time complexity remains the same,
that is, O(np+3 rp+2 N).

In a m-th-order Markov version of tDBN, regardless of
process stationarity, nodes are allowed to have parents from
m previous time-slices. Therefore, in Algorithm 2, allPar-
entSets← P≤p(X[t−m+ 1] ∪ · · · ∪X[t]) and Dt+1

t−m+1

is used instead of Dt+1
t . These changes worsen the al-

gorithm’s time complexity, which can be roughly approxi-
mated by O((nm)p+3 rp+2 N).

4 EXPERIMENTAL RESULTS

In this section we describe the methodology used for evalu-
ating the optimal tDBN learning algorithm and present the
obtained results, in terms of speed and accuracy. Our al-
gorithm was implemented in Java using an object-oriented
approach and released under a free-software license1. Sim-
ulated data was first considered to evaluate the simpler
stationary first-order Markov tDBN. As very good results
were achieved, further assessment on real data with a non-
stationary first-order Markov tDBN was used to learn time-
varying gene regulatory networks from gene expression
data of Drosophila melanogaster.

4.1 SIMULATED DATA

In the first set of experiments comprising simulated data,
Banjo (et al., 2005), a state of the art DBN learning tool,
was employed besides the tDBN learning algorithm for
comparative purposes. Banjo was chosen for being able to
also learn the intra-slice connectivity, as opposed to most
DBN learning implementations. Throughout the experi-
ments, an implementation’s ability to recover a known net-
work structure was measured. This was accomplished by
specifying a DBN (both its structure and parameters), sam-
pling the network to generate observations and inputting
the produced datasets to each implementation, in order to
learn the underlying structure. The original and recovered
networks were then compared by evaluating the precision

1Available at http://josemonteiro.github.io/
tDBN/ where additional experimental results are also provided.

0 500 1,000 1,500 2,000 2,500

0.2

0.4

0.6

0.8

1

N

P
re
ci
si
o
n

n = 5

n = 7

n = 9

Figure 1: Plot of the precision values achieved by the
tDBN+LL learning algorithm for different values of input
observations N . Three lines are shown, corresponding to
complete tree-augmented networks with different number
of attributes n, each attribute taking r = 8 different states
and having p = 2 parents from the previous time-slice.
Each point results from averaging the precision over 25
sampled datasets, with error bars denoting standard errors.
Precision generally increases with N for every choice of n,
attaining a plateau with N > 2000.

and recall metrics. In addition, to provide a unified score
combining the two previous metrics, the F -measure was
also calculated.

Because many methods only learn the inter-slice connec-
tivity of DBN, Table 1 present the metrics taking into ac-
count (i) only the inter-slice edges, and (ii) all edges. The
results in Table 1 are displayed as average statistics over
5 runs. Precision (Pre), recall (Rec) and F -measure (F1)
values are presented as percentages, running time is in sec-
onds; n is the number of network attributes, p is the number
of parents from the preceding time-slice, r is the number of
states of all attributes, andN is the number of observations.
Values in bold correspond to the highest F -measure score
in groups (i) or (ii); that is, one concerning the recovery of
the inter-slice edges only and another concerning the recov-
ery of all edges. Additional results and details concerning
other experiments employing the tDBN learning algorithm
are shown in Figures 1 and 2.

In the comparative tests, the stationary tDBN learning al-
gorithm was employed using the LL and MDL scores.
Banjo’s Markov lag interval was set between 0 and 1 to
allow intra-slice edges. Its running time was set to 10 min-
utes, which was always longer than learning tDBN’s, and
simulated annealing was used as search procedure. In all
cases, the maximum number of parents was set according
to the original network. The experiments were run on an
Intel i5-3570 @ 3.40 GHz machine.

http://josemonteiro.github.io/tDBN/
http://josemonteiro.github.io/tDBN/

Table 1: Comparative structure recovery results on simulated data. Banjo’s running time is not shown, as it was always
600 seconds.

tDBN+LL tDBN+MDL Banjo
N Inter-slice Global Inter-slice Global Inter-slice Global

Pre Rec F1 Pre Rec F1 Time Pre Rec F1 Pre Rec F1 Time Pre Rec F1 Pre Rec F1

Complete tree-augmented network (n = 20, p = 2, r = 2)
100 64 ± 3 64 ± 3 64 61 ± 4 61 ± 4 61 4 75± 3 54± 3 63 67± 3 54± 3 60 4 98± 3 17± 1 29 66± 9 15± 1 24

300 88 ± 2 88 ± 2 88 86 ± 3 86 ± 3 86 12 98 ± 2 80 ± 1 88 90± 2 79± 1 84 13 98± 3 18± 1 30 54± 3 20± 1 29

700 97 ± 1 97 ± 1 97 98 ± 1 98 ± 1 98 28 100± 0 93± 0 96 100± 0 95± 0 97 29 97± 3 19± 1 32 46± 3 19± 1 27

Complete tree-augmented network (n = 20, p = 2, r = 5)
100 15 ± 2 15 ± 2 15 13 ± 2 13 ± 2 13 68 21± 2 11± 1 14 16 ± 1 11 ± 1 13 68 – – – – – –
300 84 ± 3 84 ± 3 84 83 ± 3 83 ± 3 83 209 51± 5 26± 2 34 45± 5 29± 3 35 213 – – – – – –
700 100 ± 0 100 ± 0 100 100 ± 0 100 ± 0 100 491 97± 2 49± 1 65 96± 2 64± 1 77 489 100± 0 3± 0 6 100± 0 2± 0 4

Incomplete tree-augmented network (n = 20,max p = 3, r = 2)
100 39± 1 81± 3 53 43± 0 70± 1 53 44 73 ± 2 67 ± 2 70 70 ± 2 66 ± 3 68 46 96± 4 17± 1 29 60± 14 18± 3 28

300 43± 1 90± 1 58 53± 1 87± 2 66 136 85 ± 1 84 ± 2 84 86 ± 3 85 ± 3 85 140 100± 0 19± 1 32 46± 3 23± 1 31

700 48± 0 99± 1 65 58± 1 96± 2 72 330 90 ± 0 94 ± 1 92 94 ± 0 96 ± 0 95 326 93± 7 20± 2 33 37± 5 21± 3 27

Inter-sliced only network (n = 20, p = 2, r = 2)
100 63 ± 3 63 ± 3 63 42 ± 2 63 ± 3 50 4 73± 2 51± 3 60 43± 2 51± 3 47 4 100± 0 18± 1 31 100± 0 18± 1 31

300 87 ± 1 87 ± 1 87 59 ± 1 87 ± 1 70 12 91± 1 79± 1 85 59± 1 79± 1 68 12 100± 0 18± 0 31 89± 11 18± 0 30

700 91± 1 91± 1 91 61 ± 1 91 ± 1 73 28 96 ± 1 88 ± 1 92 63 ± 0 88 ± 1 73 28 100± 0 18± 0 31 100± 0 18± 0 31

Four different network settings are considered in Table 1.
The first two networks are complete tree-augmented DBN,
in the sense that each attribute in X[t+ 1] has exactly p
parents in X[t] and at most one parent in X[t+ 1]. In
these settings, the number of edges is always n(p + 1) −
1. On the other hand, the third network is an incomplete
tree-augmented DBN, because the number of parents from
the preceding slice is chosen at random between 1 and p.
In the fourth network, there are no edges inside X[t+ 1],
corresponding to the traditional inter-sliced DBN concept.

According to each network setting, a network was created
by randomly generating its structure and parameters using
uniform distributions. An experimental group, correspond-
ing to a line in Table 1, consisted of 5 independent datasets
with the same number of observations, sampled from one
of the generated networks. The presented values result
from averaging the performance metrics over the datasets
of a group.

From the experimental results in Table 1, it can be seen that
the performance of the proposed algorithm consistently in-
creases withN . In the first setting, the tDBN learning algo-
rithm performs very well with either score, with LL having
a slight advantage. This result was expected, since a com-
plete tree-augmented DBN is biased towards tDBN, and LL
assures that a necessary and sufficient number of edges is
recovered. Banjo obtains a very good inter-slice precision,
but only recovers one fifth of the original edges. Notice
that Banjo’s global results deteriorate when N increases,
which can be explained by decreasing performance while
identifying the intra-slice connectivity.

In the second setting, the tDBN+LL learning algorithm
globally outperforms the other implementations. The reg-
ularization effect of MDL is observed through lower recall
levels, since the number of network parameters increases

with r. Nevertheless, tDBN+MDL greatly improves with
N and already achieves very high precision for N = 700.
Comparing to the first setting, Banjo is more conservative
adding edges, and chooses none for N ≤ 300.

In the third setting, the inter-slice precision of tDBN+LL
does not exceed 50%, due to the recovery of exactly p
parents, when the real number can be smaller than p. In
this setting, tDBN+MDL clearly achieves the best perfor-
mance. The penalizing term in MDL prevents false positive
edges from being chosen, resulting in significantly higher
precision values compared to LL. Banjo performs like in
the first setting, being able to determine the correct parents
and thus reaching high precision values with respect to the
inter-slice connectivity.

Even though the last setting comprises a network without
intra-slice edges, the tDBN learning algorithm performs
well with either scoring function. In fact, the inter-slice
metrics are comparable to the ones in the first setting. The
F -measure values of LL and MDL are very similar, caus-
ing neither score to stand out. The recovery of an intra-slice
tree, which is an inherent aspect of tDBN learning pro-
cedure, worsens the global performance of the algorithm.
In this setting, Banjo obtains an excellent inter-slice re-
sult, correctly identifying all the dependences and report-
ing no false positives. On the other hand, the percentage
of retrieved edges is quite low, resulting in unimpressive
F -measure scores.

Overall, the tDBN learning algorithm obtained very good
results. While tDBN+LL outperformed in the more com-
plex second setting network, tDBN+MDL showed to be
more robust, achieving at least one highest F -measure
score in each setting. Banjo consistently identified high-
precision sparse inter-sliced networks, but generally could
not recover more than 20% of the existing data depen-

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(a) Original network

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(b) N = 50

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(c) N = 100

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(d) N = 150

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(e) N = 200

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(f) N = 250

Figure 2: Example of the tDBN+LL learning algorithm’s
ability to recover a known network. The original tree-
augmented network has n = 5 attributes, each taking r = 8
different states and having one parent from the previous
time-slice. Differing in the number of input observations
N , five recovered networks are shown. Dashed edges are
not present in the original network but are nevertheless re-
covered. As N increases, the recovered network structures
become more similar to the original, being identical for
N = 250.

dences.

4.2 DROSOPHILA MELANOGASTER DATA

The following experiments consisted in applying the tDBN
learning algorithm to identify non-stationary gene regu-
latory networks of Drosophila melanogaster. Arbeitman

et al. (2002) published a dataset containing gene expres-
sion measurements of 4028 Drosophila genes over 67 time
steps, covering the four major stages of morphogenesis:
embryo, larva, pupa and adult. Some authors have focused
on a small subset of this time series, consisting of eleven
genes involved in wing muscle development (Guo et al.,
2007; Robinson and Hartemink, 2010; Dondelinger et al.,
2013). Consequently, to allow comparison to other meth-
ods, the same subset is considered herein. The Drosophila
gene expression dataset was preprocessed in the same way
as in the aforementioned references.

For learning the gene regulatory networks, the first-order
Markov tDBN learning algorithm was employed with the
MDL score, allowing at most two parents from the past.
However, as the number of observations was small, there
was not enough evidence for MDL to include more than
one parent. Figure 3 presents the resulting networks in
compact form, to facilitate comparison to networks inferred
by other authors. Table 2 examines the identified gene in-
teractions against the ones reported in other publications,
in the form of matching percentages. Guo et al. (2007)
predicted non-stationary undirected networks, while Don-
delinger et al. (2013) inferred non-stationary DBN.

The results in Table 2 suggest that tDBN learning algorithm
performed reasonably well. The embryonic and larval net-
works contain a significant number of known interactions
that are present in at least one of the corresponding reported
networks. On the other hand, the pupal and adult networks
did not achieve this result. Some of the pupal interactions
could be disjointly found on the networks of both authors,
resulting in a higher combined matching rate. The adult
network, however, retrieved few known interactions, even
when comparing to both sources combined.

Table 2: Comparative structure learning results on
Drosophila melanogaster data.

Morphogenic stage Embryonic Larval Pupal Adult

Observed time-slices 31 10 18 8

Matches (Guo et al., 2007) 25% 50% 40% 30%

Matches (Dondelinger et al., 2013) 75% 60% 30% 20%

Matches (both sources) 75% 70% 60% 40%

As acknowledged by Dondelinger et al. (2013), an objec-
tive assessment regarding the accuracy of the learnt net-
works is not possible due to limited biological knowledge
available, which leads to the absence of a gold standard.
Furthermore, there are three reasons for which the obtained
results should be interpreted carefully. First, despite the
best efforts to follow the procedure in Zhao et al. (2006),
the resulting preprocessed dataset was possibly not the
same. Second, learnt interactions are suggestions of causal
regulatory effects. Additional biological experiments are
necessary for validating the inferred networks, as noted in
Guo et al. (2007). Third, the small number of observa-
tions leads to the existence of many equivalent networks

with maximum score, but only one is reported by the tDBN
learning algorithm.

5 CONCLUSION

We have presented a simple yet effective algorithm for
learning the structure of DBN, jointly recovering the inter
and intra time-slice connectivity. The tDBN learning algo-
rithm has polynomial time complexity with respect to the
number of attributes and can be applied to non-stationary
Markov processes.

The stationary version of the algorithm achieved very good
results on simulated datasets, showing to be competitive
with state of the art algorithms in recovering underly-
ing structures. Furthermore, encouraging results were ob-
tained on real data with the non-stationary and higher-order
Markov versions of tDBN, indicating a broad scope of ap-
plications for the proposed algorithm.

Finally, the application of our method to learn non-
stationary processes could be improved in conjunction with
change-point techniques, as investigated in Robinson and
Hartemink (2010) and Dondelinger et al. (2010). In its
current form, the tDBN learning algorithm cannot identify
changes in the underlying distribution of data and thus the
number of transition networks to learn, as well as adequate
training data for each network, need to be previously spec-
ified.

Acknowledgments

This work was supported by national funds through
FCT, Fundação para a Ciência e a Tecnologia, un-
der contracts LAETA (UID/EMS/50022/2013) and IT
(UID/EEA/50008/2013), and by projects CancerSys
(EXPL/EMS-SIS/1954/2013) and InteleGen (PTDC/DTP-
FTO/1747/2012). SV acknowledges support by Program
Investigador FCT (IF/00653/2012) from FCT, co-funded
by the European Social Fund (ESF) through the Opera-
tional Program Human Potential (POPH).

References

M. N. Arbeitman, E. E. M. Furlong, F. Imam, E. Johnson,
B. H. Null, B. S. Baker, M. A. Krasnow, M. P. Scott,
R. W. Davis, and K. P. White. Gene expression during
the life cycle of Drosophila melanogaster. Science, 297
(5590):2270–2275, 2002.

J. A. Bilmes. Dynamic Bayesian multinets. In Proc. of
the 16th Conference on Uncertainty in Artificial Intelli-
gence, pages 38–45, 2000.

D. Chickering, D. Geiger, and D. Heckerman. Learning
Bayesian networks: Search methods and experimental

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(a) Embryonic

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(b) Larval

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(c) Pupal

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(d) Adult

Figure 3: Drosophila gene regulatory networks identified
by the tDBN learning algorithm. Networks are shown in
compact form, where each edge represents a dependence
between a node at time-slice t + 1 and its parent at the
previous time-slice t. Highlighted edges indicate a relation
found in the majority of the morphogenic stages. Intra-slice
edges are omitted.

results. In Proc. of the 5th International Workshop on Ar-
tificial Intelligence and Statistics, pages 112–128, 1995.

C. Chow and C. Liu. Approximating discrete probability
distributions with dependence trees. IEEE Transactions
on Information Theory, 14(3):462–467, 1968.

N. Dojer. Learning Bayesian networks does not have to
be NP-hard. In Mathematical Foundations of Computer
Science 2006, pages 305–314. 2006.

N. Dojer, P. Bednarz, A. Podsiadło, and B. Wilczyński.
BNFinder2: Faster Bayesian network learning and
Bayesian classification. Bioinformatics, page btt323,
2013.

F. Dondelinger, S. Lèbre, and D. Husmeier. Heteroge-
neous continuous dynamic Bayesian networks with flex-
ible structure and inter-time segment information shar-
ing. In Proc. of the 27th International Conference on
Machine Learning, pages 303–310, 2010.

F. Dondelinger, S. Lèbre, and D. Husmeier. Non-
homogeneous dynamic Bayesian networks with
Bayesian regularization for inferring gene regula-
tory networks with gradually time-varying structure.
Machine learning, 90(2):191–230, 2013.

J. Edmonds. Optimum branchings. Journal of Research
of the National Bureau of Standards B, 71(4):233–240,
1967.

A. Hartemink et al. Banjo: Bayesian
network inference with Java objects.
http://www.cs.duke.edu/amink/software/banjo/, 2005.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian net-
work classifiers. Machine learning, 29(2-3):131–163,
1997.

N. Friedman, K. Murphy, and S. Russell. Learning the
structure of dynamic probabilistic networks. In Proc. of
the 14th Conference on Uncertainty in Artificial Intelli-
gence, pages 139–147, 1998.

M. Grzegorczyk and D. Husmeier. Bayesian regulariza-
tion of non-homogeneous dynamic Bayesian networks
by globally coupling interaction parameters. In Journal
of Machine Learning Research Workshop and Confer-
ence Proceedings, volume 22, pages 467–476, 2012.

F. Guo, S. Hanneke, W. Fu, and E. P. Xing. Recovering
temporally rewiring networks: A model-based approach.
In Proc. of the 24th international conference on Machine
learning, pages 321–328, 2007.

D. Heckerman, D. Geiger, and D. Chickering. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine learning, 20(3):197–243, 1995.

M. Kolar, L. Song, A. Ahmed, and E. P. Xing. Estimating
time-varying networks. The Annals of Applied Statistics,
4(1):94–123, 2010.

K. Murphy. The Bayes net toolbox for Matlab. Computing
Science and Statistics, 33:2001, 2001.

K. Murphy. Dynamic Bayesian networks: representation,
inference and learning. PhD thesis, University of Cali-
fornia, 2002.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Representation and
Reasoning Series. Morgan Kaufmann, 1988. ISBN
9781558604797.

J. W. Robinson and A. J. Hartemink. Learning non-
stationary dynamic Bayesian networks. Journal of Ma-
chine Learning Research, 11:3647–3680, 2010.

R. Tarjan. Finding optimum branchings. Networks, 7(1):
25–35, 1977.

N. Vinh, M. Chetty, R. Coppel, and P. Wangikar. Glob-
alMIT: Learning globally optimal dynamic Bayesian
network with the mutual information test criterion.
Bioinformatics, 27(19):2765–2766, 2011a.

N. Vinh, M. Chetty, R. Coppel, and P. Wangikar. Poly-
nomial time algorithm for learning globally optimal dy-
namic Bayesian network. In Neural Information Pro-
cessing, pages 719–729, 2011b.

W. Zhao, E. Serpedin, and E. R. Dougherty. Inferring gene
regulatory networks from time series data using the min-
imum description length principle. Bioinformatics, 22
(17):2129–2135, 2006.

	INTRODUCTION
	RELATED WORK
	OUR APPROACH

	THEORETICAL BACKGROUND
	PROPOSED METHOD
	OPTIMAL TREE-AUGMENTED DBN STRUCTURE LEARNING
	COMPLEXITY ANALYSIS
	EXTENSIONS TO STATIONARITY AND HIGHER-ORDER MARKOV

	EXPERIMENTAL RESULTS
	SIMULATED DATA
	DROSOPHILA MELANOGASTER DATA

	CONCLUSION

