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Abstract. Outliers can have extreme influence on data analysis and so their pres-
ence must be taken into account. We propose a method to perform outlier detec-
tion on multivariate survival datasets, named Dual Bootstrap Hypothesis Testing
(DBHT). Experimental results show that DBHT is a competitive alternative to
state-of-the-art methods and can be applied to clinical data.

1 Introduction

Survival analysis, the field that studies time-to-event data, has become a relevant topic
in clinical and medical research. In many medical studies time to death is the event of
interest, hence, it is usually named survival time. However, other important measures
may also be considered, such as the time between response to treatment or the time to
the onset of a disease.

Survival analysis is specifically tailored to deal with unknown survival times for
a subset of the study group, a phenomenon called censoring. The most common type
is right-censoring, addressed in this work; it occurs when the event is beyond the end
of the follow-up period. Survival data is typically denoted by D = {(X1, Y1), . . . ,
(XN , YN )}, where each Xi is a p-dimensional vector of covariates and Yi = (ti, δi),
where ti is the event or censoring time and δi the censoring indicator.

There are several definitions of an outlier. Hawkins [6] defines it “as an observation
that deviates so much from other observations as to arouse suspicion that it was gen-
erated by a different mechanism than the remaining data”. In the survival field, Nardi
and Schemper [8] define outlying observations as individuals whose survival time is too
short, or too long, with respect to the values of its covariates.

In this work, we propose to perform outlier detection in survival analysis taking
profit from Harrel’s concordance c-index [5] and extending the work in [7]. The con-
cordance c-index measures the model’s ability of predicting a higher relative risks to
individuals whose event occurs first. The relative risk is estimated from the output of
the model for each individual; in a Cox Proportional hazards model, for instance, the
relative risk corresponds to the hazard ratio.

2 DBHT

Bootstrapping [3] is a resampling technique to unveil the underlying distribution of the
data. It is used when this distribution is unknown or simplifying assumptions are not
reasonable. Given a dataset D with N observations, one bootstrap sample is obtained
by sampling, with replacement, N observations from D.



We propose to improve the bootstrap hypothesis test (BHT) described in [7]. In
the BHT method, the procedure removes one observation from the dataset and then
assesses the impact of each removal on concordance. This has the undesired effect that,
with less observations to fit, concordance tends to increase, which potentially increases
the number of “false positives”, signalling inliers as outliers.

The proposed method, called dual bootstrap hypothesis test (DBHT), overcomes
this problem. In starts by generating two histograms from two antagonistic versions of
the bootstrap procedure – the poison and the antidote bootstraps – and then compare
them using a statistical test. The antidote bootstrap excludes the observation under test
from every bootstrap sample. On the other hand, the poison bootstrap works by forcing
the observation under test to be part of every bootstrap sample. Both the poison and
antidote bootstraps have the same number of observations in each bootstrap sample.

The general strategy is as follows. For each observation i we make the hypothesis
that the observation is “poison” (meaning that the observation is an outlier). To test it,
we compare the histograms of concordance variation∆C between the antidote and poi-
son bootstraps. If the observation is indeed an outlier, we expect the antidote bootstrap
to push the histogram for higher values of ∆C. Conversely, we expect the poison boot-
strap to generate lower values of ∆C. The more the poison histogram is to the left of
the antidote histogram, the more outlying the observation is. We consider ∆Cantidote
and ∆Cpoison two real random variables with the following hypothesis:

H0 : E [∆Cantidote] > E [∆Cpoison] ;

H1 : E [∆Cantidote] ≤ E [∆Cpoison] .

To calculate the p-value of the test we use a independent two sample Welch’s t-test.
DBHT is a soft-classifier and a single-step method with the output being an outlying

measure for each observation. From this, it is possible to extract the k most outlying
observations. Pseudo-code of the DBHT procedure can be found in Algorithm 1.

Algorithm 1 Dual Bootstrap Hypothesis Test
Input: input datasetD, the survival model and number of bootstrap samplesB.
Output: a p-value for each observation
for all di ∈ D do
D−i = D \ di {remove observation i from the original dataset}
GenerateB poison bootstrap samples
GenerateB antidote bootstrap samples from
Compute theB values of∆Cpoison and store them in vector psn
Compute theB values of∆Cantidote and store them in vector ant
From psn and ant compute the p-value using a t test for equality of means

end for
return the vector of p-values

In Figure 1, poison and antidote histograms for an outlier (on the left) and inlier (on
the right) can be found.

3 Results

Herein, we assess the performance of DBHT in 12 synthetic datasets. Its performance
is compared with two concordance-based methods [7] – one step deletion (OSD) and



Fig. 1. (Colour online) On the left, contrast between antidote (blue) and poison (red) bootstrap
histograms of concordance variation, for a typical outlier. On the right, antidote (blue) and poison
(red) bootstrap histograms of concordance variation, for a typical inlier.

Bootstrap hypothesis test (BHT) – and with outlier detection methods commonly em-
ployed on survival data, namely, martingale residuals (MART), deviance residuals
(DEV) , likelihood displacement statistic (LD) and DFBETAS (DFB).

The model chosen to recreate survival times was the Cox proportional hazards. The
simulated observations were generated from two different Cox models, a general trend
model β = βG and an outlier model β = β′. From the Cox hazard function, the
distribution of T is given by F (t|X) = 1 − exp [−H0(t) · exp(βX)]. The vector of
covariates X characterizing each individual was generated from a three-dimensional
normal distribution with zero mean with identity covariance matrix. The survival times
were generated using the methodology explained in [1], each observation time as func-
tion of the covariate vector X given by T = H−10 [− log(U) · exp(−βX)], where U is
a uniform random variable distributed in the interval [0, 1].

Several scenarios were simulated. For each one, the vector of covariates was given
by Xi ∼ N(0, I), where I is the identity matrix. Each simulated dataset contains 100
observations with hazard functions

hi(t) =

{
h0(t) exp{βGX} 1 ≤ i ≤ n− k
h0(t) exp{β

′
X} n− k < i ≤ n,

where the pure model βG = (1, 1, 1) and β
′

taking 12 different vectors; see Table 1.
When assessing the performance of outlier detection methods on the simulated data

it has to be taken into account that the observations are randomly generated from distri-
butions: the inliers from the general distribution βG, and the outliers from an outlying
distribution β′. It may happen that observations initially intended to be inliers may be
drawn from the lower or upper tail of the distribution and may configure an outlier,
and vice-versa. Our performance assessment assumes that for each scenario the obser-
vations generated from general distribution are inliers and the observations generated
from the outlying distribution are outliers.

We used two metrics to analyse the results, the true positive rate (TPR), also known
as sensitivity, and the area under the ROC curve (AUC). For datasets with k outliers the
TPR will measure for each scenario the fraction of true outliers found in the top-k most
outlying observations indicated by each method. The AUC provides us a threshold-
independent outlier detection ability. The AUC is not applicable to the output of the
OSD method, because it does not provide an outlying score for every observation. The



TPR and AUC are the mean of 50 runs per simulation configuration. Results are de-
picted in Table 1.

Table 1. Outlier configurations used in the simulated data (left). Average of TPR (middle) and
average of AUC (right) grouped by outlier scenarios.

Scen. Θ
′
||β
′
||/||βG|| β

′
MART DEV LD DFB OSD BHT DBHT MART DEV LD DFB BHT DBHT

1 180° 1 (-1,-1,-1) 0.29 0.36 0.43 0.36 0.47 0.43 0.47 0.70 0.70 0.74 0.68 0.78 0.82
2 180° 0.2 (-0.2,-0.2,-0.2) 0.22 0.25 0.31 0.29 0.32 0.31 0.34 0.65 0.65 0.70 0.64 0.71 0.75
3 180° 5 (-5,-5,-5) 0.50 0.58 0.59 0.52 0.63 0.59 0.65 0.80 0.80 0.78 0.77 0.86 0.90
4 135° 0.2 (-0.143,0,-0.283) 0.22 0.23 0.30 0.28 0.30 0.29 0.32 0.64 0.64 0.69 0.63 0.71 0.73
5 135° 5 (-3,6,0,-7.07) 0.44 0.54 0.52 0.48 0.58 0.53 0.58 0.78 0.77 0.74 0.75 0.82 0.84
6 90° 0.2 (-0.245,0,-0.245) 0.21 0.22 0.28 0.26 0.27 0.26 0.28 0.63 0.63 0.67 0.63 0.68 0.71
7 90° 5 (6.12,0,-6.12) 0.40 0.50 0.40 0.41 0.44 0.37 0.42 0.76 0.76 0.66 0.73 0.70 0.72
8 0° 0.2 (0.2,0.2,0.2) 0.18 0.18 0.23 0.22 0.22 0.20 0.23 0.62 0.62 0.66 0.62 0.65 0.68
9 0° 5 (5,5,5) 0.32 0.36 0.18 0.25 0.09 0.06 0.07 0.74 0.72 0.61 0.69 0.60 0.60

10 180° 10 (-10,-10,-10) 0.53 0.63 0.64 0.57 0.68 0.60 0.70 0.83 0.83 0.80 0.81 0.87 0.92
11 0° 10 (10,10,10) 0.38 0.46 0.24 0.32 0.14 0.11 0.12 0.78 0.76 0.61 0.73 0.59 0.61
12 135° 10 (-7.15,0,-14.15) 0.49 0.60 0.54 0.51 0.60 0.52 0.60 0.80 0.80 0.74 0.78 0.81 0.86

4 Conclusion and future work

DBHT has shown promising results, being the best method in nine of the 12 simulated
outlier scenarios. On the three scenarios where β′ is collinear with βG, the performance
of DBHT, BHT and OSD is poor; in these scenarios outliers have the same hazard
direction as inliers, and so concordance fails to capture them as it does note take into
account the difference in predicted hazards. This kind of outliers are typically very well
detected by residual-based methods, so DBHT may be useful when used jointly with
these methods. Future applications include outliner detection for oncological patients.
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