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Abstract

The aim of this work is to benchmark scoring functions used by Bayesian network learn-

ing algorithms in the context of classification. We considered both information-theoretic

scores, such as LL, AIC, BIC/MDL, NML and MIT, and Bayesian scores, such as K2, BD,

BDe and BDeu. We tested the scores in a classification task by learning the optimal TAN

classifier with benchmark datasets. We conclude that, in general, information-theoretic

scores perform better than Bayesian scores.

1 Introduction

Bayesian networks [Pea88] allow efficient and accurate representation of the joint probability

distribution over a set of random variables. For this reason, they have been widely used

in several domains of application where uncertainty plays an important role, like medical

diagnosis and modeling DNA binding sites. Learning Bayesian networks consists of finding

the network that best fits, for a certain scoring function, the data. This problem is not

straightforward. Cooper [Coo90] showed that the inference of a general Bayesian network

is a NP-hard problem, and later, Dagum and Luby [DL93] showed that even finding an

approximate solution is NP-hard.

These results led the community to search for the largest subclass of Bayesian networks for

which there is an efficient structure learning algorithm. First attempts confined the network



to tree structures and used Edmonds [Edm67] and Chow-Liu [CL68] optimal branching algo-

rithms to learn the network. More general classes of Bayesian networks have eluded efforts

to develop efficient learning algorithms. Indeed, Chickering [Chi96] showed that learning the

structure of a Bayesian network is NP-hard even for networks constrained to have in-degree

at most 2. Later, Dasgupta [Das99] showed that even learning 2-polytrees1 is NP-hard. Due

to these hardness results exact polynomial-time bounded approaches for learning Bayesian

networks have been restricted to tree structures.

Consequently, the standard methodology for addressing the problem of learning Bayesian

networks became heuristic search, based on scoring metrics optimization, conducted over some

search space. Many algorithms have been proposed along these lines, varying both on the

formulation of the search space (network structures, equivalence classes of network structures

and orderings over the network variables), and on the algorithm to search the space (greedy

hill-climbing, simulated annealing, genetic algorithms, tabu search, etc). Nevertheless, in all

these algorithms the search is guided by a scoring function that evaluates the degree of fitness

between the network and the data.

The aim of this work is to study scoring functions used by learning algorithms based on

the score+search paradigm in the context of classification, namely, for learning the optimal

TAN classifier [FGG97]. We also want to empirically evaluate the merits of each score by

means of a comparative experimental study over benchmark datasets. Well known scores are

those based on information theory, such as log-likelihood (LL), Akaike information criterion

(AIC), Bayesian information criterion (BIC) (also improperly called minimum description

length (MDL)), normalized maximum likelihood (NML) and mutual information test (MIT),

and Bayesian scoring functions such as K2, Bayesian Dirichlet (BD) and its variants (BDe

and BDeu).

The paper is organized as follows. In Section 2, we briefly revise Bayesian networks and

learning algorithms for tree-structured Bayesian networks. Such algorithms are based on the

score+search paradigm, and so all scoring functions known in the literature are presented,

justified, and classified among important properties. In Section 3, we revise Bayesian network

classifiers and extend previous algorithms for learning optimal TAN classifiers. In Section 4

we present experimental results which evaluates the merits of each score. Finally, in Section

1A polytree is a directed acyclic graph such that, given two nodes, there are not two different paths from

one to another. A 2-polytree is a polytree where each node has at most in-degree 2.
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5 we draw some conclusions and discuss future work.

2 Learning Bayesian networks

A finite random variable X over D is a random variable that takes values over a finite set

D ⊆ R. A n-dimensional finite random vector X over D is a random vector where each

component Xi is a random variable over D for all i = 1, . . . , n. The random vectors X and Y

are said to be conditionally independent given a random vector over Z if P (x|y, z) = P (x|z).

Definition 2.1 (Bayesian network) A n-dimensional Bayesian network (BN) is a triple

B = (X, G,Θ) where:

• X is a n-dimensional finite random vector where each random variable Xi ranged over

by a finite domain Di. Henceforward, we denote the joint domain by D =
∏n

i=1 Di.

• G = (N,E) is a directed acyclic graph (DAG) with nodes N = {X1, . . . ,Xn} and edges

E representing direct dependencies between the variables.

• Θ encodes the parameters {θijk}i∈1...n, j∈DΠXi
, k∈Di

of the network, where

θijk = PB(Xi = xik|ΠXi
= wij),

ΠXi
denotes the set of parents of Xi in G, DΠXi

denotes the joint domain of the variables

in ΠXi
, xik is the k-th value of Xi and wij is the j-th configuration of ΠXi

.

A Bayesian network defines a unique joint probability distribution over X given by

PB(X1, . . . ,Xn) =

n
∏

i=1

PB(Xi|ΠXi
). (1)

We denote the set of all Bayesian networks with n variables by Bn.

Informally, a Bayesian network encodes the independence assumptions over the component

random variables of X. An edge (j, i) in E represents a direct dependency of Xi from Xj .

Moreover, Xi is conditionally independent of its non descendants given its parents ΠXi
in G.

In addition to the graph structure, it is necessary to specify the parameters that quantify

the network. This is where the third component of the triple takes place, it specifies the

conditional probability distribution θijk at each node for each possible value i ∈ 1 . . . n,

j ∈ DΠXi
and k ∈ Di.
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The problem of learning a Bayesian network given data T consists on finding the Bayesian

network that best fits the data T . By a Bayesian network that best fits the data T one could

be tempted to consider a Bayesian network that maximizes the probability of generating T .

However, this approach is not very useful because the learned network overffits. In order to

quantify the fitting of a Bayesian network a scoring function φ : Bn×DN → R is considered.

The scoring function should be asymptotically correct, that is, the learned distribution with

maximum score should converge, with high probability, to the underlying distribution as the

size of the data increases. In this context, the problem of learning a Bayesian network can be

recasted in the following optimization problem.

Definition 2.2 (Learning a Bayesian network) Given a data T = {y1, . . . ,yN} and a

scoring function φ, the problem of learning a Bayesian network is to find a Bayesian network

B ∈ Bn that maximizes the value φ(B,T ).

Learning Bayesian networks is not straightforward. Cooper [Coo90] showed that the

inference of a general Bayesian network is a NP-hard problem, and later, Dagum and Luby

[DL93] showed that even finding an approximate solution is NP-hard.

2.1 Scoring functions for learning Bayesian networks

Several scoring functions for learning Bayesian networks have been proposed in the literature

[dC06, YC02]. It is common to classify scoring functions into two main categories: Bayesian

and information-theoretic. In general, for efficiency purposes, these scores need to decom-

pose over the network structure. The decomposability property allows for efficient learning

algorithms based on local search methods. Moreover, when the learning algorithm searches

in the space of equivalence classes of network structures, scoring functions must also be score

equivalent, that is, equivalent networks must score the same.

Next, we survey scoring functions for learning Bayesian networks and classify them ac-

cording the decomposability and score-equivalence properties. We start by introducing some

notation. The number of states of the finite random variable Xi is ri. The number of possible

configurations of the parent set ΠXi
of Xi is qi, that is,

qi =
∏

Xj∈ΠXi

rj .
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A configuration of ΠXi
is represented by wij (1 ≤ j ≤ qi). Nijk is the number of instances in

the data T where the variable Xi takes its k-th value xik and the variables in ΠXi
take their

j-th configuration wij. Nij is the number of instances in the data T where the variables in

ΠXi
take their j-th configuration wij , that is,

Nij =

ri
∑

k=1

Nijk.

Finally, the total number of instances in the data T is N .

2.1.1 Bayesian scoring functions

The general idea of Bayesian scoring functions is to compute the posterior probability distri-

bution, starting from a prior probability distribution on the possible networks, conditioned

to data T , that is, P (B|T ). The best network is the one that maximizes the posterior proba-

bility. Since the term P (T ) is the same for all possible networks, in practice, for comparative

purposes, computing P (B,T ) is sufficient. Moreover, as it is easier to work in the logarithmic

space, the scoring functions use the value log(P (B,T )) instead of P (B,T ).

BD scoring function

Heckerman et al. [HGC95] proposed the Bayesian Dirichlet (BD) score by making four

assumptions on P (B,T ). The first one assumes that data T is exchangeable, that is, if an

instance of the data is exchanged with another instance, the exchanged data has the same

probability as the original one. De Finetti [dF37] showed that exchangeable instances can

only be explained by multinomial samples, which lead to formalizing the first assumption as

a multinomial sample hypothesis. Let us now introduce the needed notation.

We define,

ΘG = {Θi}i=1,...,n,

Θi = {Θij}j=1,...,qi
,

Θij = {θijk}k=1,...,ri
.

That is, ΘG encodes the parameters of a Bayesian network B with underlying DAG G, Θi

encodes the parameters concerning only the variable Xi of X in B, and Θij encodes the

parameters for variable Xi given that its parents take their j-th configuration.
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Assumption 1 (Multinomial sample) For any data T = {y1, . . . ,yN}, Bayesian network

B, variable Xi of X in B and instance yt ∈ T ,

PB(yti = xik|ytΠXi
= wij , Tt) = PB(Xi = xik|ΠXi

= wij) = θijk

for k = 1, . . . , ri and j = 1, . . . , qi, where Tt = {y1, . . . ,yt−1}.

The multinomial sample assumption asserts that the probability of observing the t-th

instance of data is conditionally independent on the previous observations Tt given B, like it

is usual for the multinomial distribution.

The second assumption assumes that parameters Θij have a Dirichlet distribution. This

hypothesis is convenient because the Dirichlet distribution is closed under multinomial sam-

pling, that is, if the prior distribution is Dirichlet, the posterior distribution, given a multi-

nomial sample, is also Dirichlet.

Assumption 2 (Dirichlet) Given a directed acyclic graph G such that P (G) > 0 then Θij

is Dirichlet for all Θij in ΘG.

The Dirichlet assumption imposes that the probability density function for Θij is given

by

ρ(Θij|G) = c

ri
∏

k=1

θ
N ′

ijk
−1

ijk (2)

with N ′
ijk > 0, where {N ′

ijk}k=1...ri
are the hyperparameters (exponents) of the Dirichlet

distribution. Moreover, when Θij is Dirichlet, the expectation of θijk is given by

E(θijk) =
N ′

ijk

N ′
ij

(3)

where

N ′
ij =

ri
∑

k=1

N ′
ijk.

At the light of Equations (2) and (3), the hyperparameter N ′
ijk can be interpreted as N ′

ijk−1

pseudo-counts (prior to data observation) for the k-th value of Xi given that its parents were

in their j-th configuration. If the prior distribution of ΘG fulfills Equation (2), then the

posteriori probability of ΘG given a multinomial sampled data T is

ρ(Θij|T,G) = c

ri
∏

k=1

θ
N ′

ijk
−1+Nijk

ijk .
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It is worthwhile noticing that the Dirichlet assumption will be useful in practice to smooth

the parameters learned from small data.

The remaining two assumptions have in mind simplifying the computation of P (B,T ). The

third hypothesis imposes that the parameters associated with each variable in the network

are independent, and, moreover, the parameters associated with each instance of the parents

of a variable are also independent.

Assumption 3 (Parameter independence) Given a directed acyclic graph G such that

P (G) > 0 then

1. ρ(ΘG|G) =
∏n

i=1 ρ(Θi|G) (global parameter independence), and

2. ρ(Θi|G) =
∏qi

j=1 ρ(Θij|G) for all i = 1, . . . , n (local parameter independence).

Finally, the fourth assumption states that the density for the parameters Θij depends only

on Xi and its parents, that is, on the local structure of Xi.

Assumption 4 (Parameter modularity) Given two directed acyclic graphs, G and G′,

such that P (G) > 0 and P (G′) > 0, if Xi has the same parents in G and G′, then

ρ(Θij|G) = ρ(Θij |G
′)

for all j = 1, . . . , qi.

Under assumption 1 to 4 Heckerman et al. [HGC95] showed the following result.

Theorem 2.3 (Heckerman, Geiger and Chickering [HGC95]) Under assumptions 1 through

4 we have that

P (B,T ) = P (B)×
n
∏

i=1

qi
∏

j=1

(

Γ(N ′
ij)

Γ(Nij + N ′
ij)
×

ri
∏

k=1

Γ(Nijk + N ′
ijk)

Γ(N ′
ijk)

)

where Γ is the Gamma function and P(B) represents the prior probability of the network B.

The theorem above induces the so-called Bayesian Dirichlet (BD) score defined as

BD(B,T ) = log(P (B)) +

n
∑

i=1

qi
∑

j=1

(

log

(

Γ(N ′
ij)

Γ(Nij + N ′
ij)

)

+

ri
∑

k=1

log

(

Γ(Nijk + N ′
ijk)

Γ(N ′
ijk)

))

.

Unfortunately, as Heckerman et al. recognized, specifying all N ′
ijk for all i, j and k is

formidable, to say the least. This makes the BD score unusable in practice. However, as we

shall see next, there are some particular cases of the BD score that are useful.
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K2 scoring function

One of the first Bayesian scoring functions, called K2, was proposed by Cooper and Herskovits

[CH92] and it is a particular case of the BD score with the uninformative assignment N ′
ijk = 1

(corresponding to zero pseudo-counts). Since Γ(c) = (c − 1)! when c is an integer, the K2

score can be expressed as follows:

K2(B,T ) = log(P (B)) +
n
∑

i=1

qi
∑

j=1

(

log

(

(ri − 1)!

(Nij + ri − 1)!

)

+

ri
∑

k=1

log(Nijk!)

)

.

BDe scoring function

Heckerman et al [HGC95] turn around the problem of hyperparameter specification by con-

sidering two additional assumptions: likelihood equivalence and structure possibility. To

introduce these hypotheses properly we require the concept of equivalent DAG’s and some

auxiliary notation.

Definition 2.4 (Equivalent directed acyclic graphs) Two directed acyclic graphs are

equivalent if they can encode the same joint probability distributions.

Given a Bayesian network B, data T can be seen as a multinomial sample of the joint

space D with parameters ΘD = {θx1...xn}xi=1,...,ri, i∈1...n where θx1...xn =
∏n

i=1 θxi|Πxi
.

Assumption 5 (Likelihood equivalence) Given two directed acyclic graphs, G and G′,

such that P (G) > 0 and P (G′) > 0, if G and G are equivalent then ρ(ΘD|G) = ρ(ΘD|G
′).

Under the likelihood equivalence assumption it follows that for equivalent DAG’s G and G′

we have that P (T |G) = P (T |G′), that is, the data T does not help to discriminate equivalent

DAG’s.

Before introducing the structure possibility hypothesis we need the concept of complete

DAG. The skeleton of any DAG is the undirected graph resulting from ignoring the direction-

ality of every edge.

Definition 2.5 (Complete directed acyclic graph) A directed acyclic graph is said to

be complete if its skeleton is complete.

In order to take advantage of the likelihood equivalence hypothesis the following assump-

tion is needed.
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Assumption 6 (Structure possibility) For any complete directed acyclic graph G, we

have that P (G) > 0.

The likelihood equivalence hypothesis, when combined with the previous assumptions (As-

sumptions 1 to 4 and 6), introduces constraints in the Dirichlet exponents N ′
ijk, as presented

in the following result.

Theorem 2.6 (Heckerman, Geiger, Chickering [HGC95]) Suppose that ρ(ΘD|G) is

Dirichlet with equivalent sample size N ′ for some complete directed acyclic graph G in D.

Then, for any Bayesian network B in D, Assumptions 1 through 6 imply

P (B,T ) = P (B)×
n
∏

i=1

qi
∏

j=1

(

Γ(N ′
ij)

Γ(Nij + N ′
ij)
×

ri
∏

k=1

Γ(Nijk + N ′
ijk)

Γ(N ′
ijk)

)

where N ′
ijk = N ′ × P (Xi = xik,ΠXi

= wij|G).

From Theorem 2.6 the hyperparameters N ′
ijk can be easily computed from N ′ and P (Xi =

xik,ΠXi
= wij |G). To understand N ′ it is relevant to note that

N ′ =
∑

x1...xn∈D

N ′
x1...xn

, (4)

where N ′
x1...xn

are the hyperparameters of the Dirichlet ρ(ΘD|G) and so, N ′ corresponds to

the sum of all pseudo-counts considered for ρ(ΘD|G).

The resulting scoring function is called likelihood-equivalence Bayesian Dirichlet (BDe)

and its expression is identical to the BD expression. Similarly to the BD score, the BDe

metric requires knowing P (Xi = xik,ΠXi
= wij |G) for all i, j and k. This knowledge might

not be elementary to find, which makes this score of little practical interest.

BDeu scoring function

A particular case of BDe, which is especially interesting, appears when

P (Xi = xik,ΠXi
= wij |G) =

1

riqi

,

that is, the prior network assigns a uniform probability to each configuration of {Xi} ∪

ΠXi
given the complete DAG G. The resulting score is called BDeu (“u” for uniform joint
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distribution) and was originally proposed by Buntine [Bun91]. This score only depends on

one parameter, the equivalent sample size N ′, and it is expressed as follows:

BDeu(B,T ) = log(P (B)) +

n
∑

i=1

qi
∑

j=1

(

log

(

Γ(N ′

qi
)

Γ(Nij + N ′

qi
)

)

+

ri
∑

k=1

log

(

Γ(Nijk + N ′

riqi
)

Γ( N ′

riqi
)

))

.

The parameter N ′ expresses the strength of our prior belief in the uniformity of the con-

ditional distributions of the network. Since there are no generally accepted rule to determine

the hyperparameters N ′
x1...xn

, there is no particular good candidate for N ′ given by Equa-

tion (4). In practice, the BDeu score is very sensitive with respect to the equivalent sample

size N ′ and so, several values are attempted.

Regarding the term log(P (B)) which appears in all the previous expressions (in BD, K2,

BDe and BDeu scoring functions), it is quite common to assume a uniform distribution,

except if, for some reason, we really prefer certain structures. When a uniform distribution

is considered, the term log(P (B)) becomes a constant and can be removed.

2.1.2 Information-theoretic scoring functions

Information-theoretic metrics are based on compression. In this context, the score of a

Bayesian network B is related to the compression that can be achieved over the data T

with an optimal code induced by B. Shannon’s source coding theorem (or noiseless coding

theorem) establishes the limits to possible data compression, and the operational meaning of

the Shannon entropy.

Theorem 2.7 (Shannon source coding theorem) As the number of instances of an i.i.d.

data tends to infinity, no compression of the data is possible into a shorter message length

than the total Shannon entropy, without losing information.

There are several optimal codes that asymptotically achieve Shannon’s limit, such as the

Fano-Shannon code and the Huffman code. To construct these codes one requires as input

a probability distribution over the data, which can be derived from a Bayesian network. So,

given data T , one can score a Bayesian network B by the size of an optimal code, induced by

the distribution B, when encoding T . This value is the information content of T by B and is
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given by

L(T |B) = − log(PB(T ))

= −
n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk log(θijk) (5)

= −
n
∑

i=1

qi
∑

j=1

Nij

ri
∑

k=1

Nijk

Nij

log(θijk). (6)

Gibb’s inequality justifies the choice of parameters θijk that minimizes L(T |B).

Lemma 2.8 (Gibb’s inequality) Let P (x) and Q(x) be two probability distributions over

the same domain, then

∑

x

P (x) log(Q(x)) ≤
∑

x

P (x) log(P (x)).

From the previous inequality, Equation (6) is minimized when

θijk =
Nijk

Nij

. (7)

Thus, when fixing the DAG structure of a Bayesian network B, Equation (6) is minimized

when θijk =
Nijk

Nij
. Clearly, L(T |B) is minimal when the likelihood PB(T ) of T given B is

maximal, which means that the Bayesian network that induces a code that compresses T the

most is precisely the Bayesian network that maximizes the probability of observing T .

LL scoring function

By applying a logarithm to the likelihood of T given B, we obtain log(PB(T )) = −L(T |B)

that is commonly called the log-likelihood of T given B. Observe that maximizing the log-

likelihood is equivalent to minimizing the information content of T by B. This leads to

defining the log-likelihood (LL) score [Bou95] in the following way:

LL(B|T ) =
n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk log

(

Nijk

Nij

)

. (8)

The LL score tends to favor complete network structures and it does not provide an useful

representation of the independence assumptions of the learned network. This phenomenon of

overfitting is usually avoided in two different ways. First, by limiting the number of parents

per network variable. Second, by using some penalization factor over the LL score. We are

particularly interested in the second approach which we discuss in the following.
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MDL scoring function

The minimum description length (MDL) scoring function [LB94, Suz93] is an Occam’s razor

approach to fitting, preferring simple Bayesian networks over complex ones, and it is rigorously

defined as:

MDL(B|T ) = LL(B|T )−
1

2
log(N)|B|, (9)

where |B| denotes the network complexity [Ris86], that is, the number of parameters in Θ for

the network B, and it is given by:

|B| =
n
∑

i=1

(ri − 1)qi.

In Equation (9), the first term measures how many bits are needed to describe data T based on

the probability distribution PB , whereas the second term represents the length of describing

the network B, that is, it counts the number of bits needed to encode B, where 1
2 log(N) bits

are used for each parameter in Θ.

AIC and BIC scoring functions

The measure of the quality of a Bayesian network can be computed in several different ways.

This leads to a generalization of the MDL scoring function given by: φ(B|T ) = LL(B|T ) −

f(N)|B|, where f(N) is a non-negative penalization function. If f(N) = 1, we have the

Akaike Information Criterion (AIC) scoring function [Aka74], that is,

AIC(B|T ) = LL(B|T )− |B|. (10)

If f(N) = 1
2 log(N), we have the Bayesian Information Criterion (BIC) score based on

Schwarz Information Criterion [Sch78], which coincides with the MDL score. If f(N) = 0, we

have the LL score.

NML scoring function

Recently, a new scoring function based on the MDL principle was proposed [KM07, RSKM08].

This new metric deserves a detailed presentation and justification for two reasons. First, it

is very recent and poorly understood, although it is based on a well established idea [RT04].

Second, it has been presented in a completely different language and the presentation is spread

in several papers which hinters its clear understanding.
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The main idea behind the MDL principle is that to explain data T one should always

choose the hypothesis with smallest description that generates T . This approach can be seen

as the Occam’s razor – the simplest explanation is the best – where simpler corresponds

to smaller description. This leads to the problem of formalizing what is a description and

its length. At first sight the answer seems to be the Kolmogorov complexity of T , that is,

the size of the smallest program that generates T written in a fixed universal programming

language. However, Kolmogorov complexity is undecidable, and so this approach is not

feasible. Moreover, the size of the description depends on the chosen programming language.

The problem seems hopeless, but when the hypotheses are probability distributions then it is

possible to rely on information theory results.

Given data T and a set of probability distributions H that may be used to describe T ,

we take the length of describing T with H to be the sum L(T |H) + L(H), where L(T |H) is

the length (in bits) of the description of T when encoded with H and L(H) is the length of

the description of H. There is absolutely no doubt that L(T |H) should be the size of the

(asymptotic) Shannon-Fano code (or any optimal code, such as the Huffman code) for encod-

ing T given H, or (minus the) log-likelihood of T given H, that is, L(T |H) = −LL(H|T ) =

− log P (T |H) where P (T |H) is the probability of sampling T with distribution H. However,

defining L(H) has never been consensual. Indeed, by looking at the Bayesian network scoring

functions like BIC/MDL and AIC (see Equations (9) and (10)), one gets an evidence of how

is hard to come up with L(H). Both these scores agree in setting L(T |H) = −LL(H|T ) but

AIC sets L(H) = |B| whereas BIC/MDL sets L(H) = 1
2 log(N)|B|. Nevertheless, it is easy

to find arguments against both choices for L(H).

Actually, using |B| in the expression of the complexity of a Bayesian network is, in general,

an error. The reason is that the parameters of a Bayesian network are conditional distribu-

tions. Thus, if there are probabilities in Θ taking value 0, they do not need to appear in

the description of Θ. Moreover, the same distribution (or probability value) might occur

several times in Θ leading to patterns that can be exploited to compress Θ significantly. As

a pathological example consider a Bayesian network with two variables X and Y such that

Y depends on X. Moreover, assume that X is a Bernoulli and Y ranges over 1000 values.

It is easy to see that |Θ| = 1 + 2 × 999. However, assume that P (Y = 0|X = 1) = 1,

P (Y = n|X = 0) = 1/1000 for 0 ≤ n ≤ 999 and P (X = 0) = 1
2 . It is clear that we can
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describe these distributions very concisely, however, if the distributions for X and Y were

without patterns we might need to describe 1 + 2× 999 different real numbers.

There have been attempts to correct L(H) in the AIC and BIC/MDL scores along these

lines [ZK04], however, these works are supported more on empirical evidence than on theo-

retical results. The main breakthrough in the community in the direction of computing L(H)

was to consider normalized minimum likelihood codes [RT04].

The idea behind normalized minimum likelihood codes is the same of universal coding.

Suppose an encoder is about to observe data T which he plans to compress as much as

possible. The encoder has a set of candidate codes H and he believes one of these codes will

allow to compress the incoming data significantly, however, he has to choose the code before

observing the data. It is clear that in general there is no code which, no mater what incoming

data T is, will always mimic the best code for T . So what is the best thing that the encoder

can do? There are simple solutions to this problem when H is finite, however, this is not the

case for Bayesian networks.

To answer this question we recast the problem in a stochastic wording. Given a set of

probability distributions H the encoder thinks that there is one distribution H ∈ H that will

assign high likelihood (low code length) to the incoming data T of fixed size N . Therefore,

we will like to design a code that for all T it will compress T as close as possible to the code

associated to H ∈ H that maximizes the likelihood of T . We call to this H ∈ H the best-fitting

hypothesis. We can compare the performance of a distribution H w.r.t. H ′ of modeling T of

size N by computing

− log(P (T |H)) + log(P (T |H ′)).

This value computes the additional number of bits needed to encode T with H, as compared

to the number of bits that had been needed if we had used H ′. Given a set of probability

distributions H and a distribution H not necessarily in H, the regret of H relative to H for

T of size N is

− log(P (T |H))− min
H∈H

(− log(P (T |H))),

which corresponds to computing the performance of H compared to the best fitting hypothesis

(in terms of log likelihood) inH. In many practical cases, given a set of hypothesis H and data

T , we are always able to find the HH(T ) ∈ H that minimizes − log(P (T |H)). For instance,

when H is the set of tree-structured Bayesian networks there is an algorithm to compute an
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optimal Bayesian network HH(T ) relative to the LL score (c.f. Section 2.3). In this case it is

possible to rewrite the regret of H relative to H for T of size N as

− log(P (T |H)) + log(P (T |HH(T ))).

The notion of regret is relative to some data T , however, it is possible to compare the perfor-

mance of the hypothesis taking into account all data of fixed size N . The idea is to take the

worst-case approach over all data of size N . Formally, the worst-case regret of H relative to

H for data of size N is given by

max
T :|T |=N

(− log(P (T |H)) + log(P (T |HH(T )))).

Finally, the universal distribution for H is one that minimizes the worst-case regret.

Definition 2.9 (Universal distribution) Let H be a set of probability distributions for

which it is always possible to find the distribution HH(T ) ∈ H that minimizes − log(P (T |H)).

The universal distribution relative to H for data of size N is the probability distribution

HH(N) such that

HH(N) = min
H

max
T :|T |=N

(− log(P (T |H)) + log(P (T |HH(T )))),

where the minimum is taken over all distributions on the data space of size N .

It is possible to compute the universal distribution relative to H when H has finite para-

metric complexity. Before presenting this result, we define the parametric complexity of H

for data of size N to be

CN (H) = log





∑

T :|T |=N

P (T |HH(T ))



 .

Theorem 2.10 (Shtakov [Sht87]) Let H be a set of probability distributions such that

CN (H) is finite. Then, the universal distribution relative to H for data of size N is given by

PNML
H (T ) =

P (T |HH(T ))
∑

T ′:|T ′|=N P (T ′|HH(T ′))
.

The distribution PNML
H (T ) is called the normalized maximum likelihood (NML) distribu-

tion. We now show how the NML distribution can be used to set up a scoring function for

Bayesian networks.
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Suppose that we have two potential models for data T , that is, two sets of probability

distributions H0 and H1. In the context of Bayesian networks, consider for example that

we want to know which is the best set of parents ΠX for a node X: {Y } or {Y,Z}. The

MDL principle states we should pick Hj that maximizes the normalized maximum likelihood

PNML
Hj

(T ), that is, we should pick Hj that maximizes

log(PNML
Hj

(T )) = log(P (T |HHj(T )))−CN (Hj)

= LL(HHj(T )|T )−CN (Hj). (11)

The quantity − log(PNML
Hj

(T )) is called the stochastic complexity of data T relative to Hj .

Observe that maximizing the normalized maximum likelihood is equivalent to minimizing the

stochastic complexity. By comparing Equation (11) with the BIC/MDL score (9) and AIC

score (10), it is clear that we are replacing the terms measuring the complexity of the network

by the parametric complexity.

We are now able to establish a Bayesian network scoring function based on the normalized

maximum likelihood. Let BG denote the set of all Bayesian networks with network structure

G. For a fixed a network structure G, the normalized maximum likelihood (NML) score is

defined as

NML(B|T ) = LL(B|T )−CN (BG). (12)

From the definition of parametric complexity, we have that

CN (BG) = log





∑

T :|T |=N

P (T |BT )





= log





∑

T :|T |=N

N
∏

t=1

PBT
(yt)





= log





∑

T :|T |=N

N
∏

t=1

n
∏

i=1

PBT
(yti|ytΠXi

)



 , (13)

where BT is the Bayesian network with maximal log-likelihood for data T . Unfortunately,

there is no hope for computing CN (BG) efficiently, since it involves an exponential sum

over all possible data of size N . Moreover, the score presented in this way would not be

decomposable, which, as discussed in the next section, would not allow the use of efficient

local search methods. The idea in [RSKM08] is to approximate Equation (13) by considering
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only the contribution to the parametric complexity of the multinomial distributions associated

to each variable given a parent configuration, that is,

fCT (BG) = log







n
∏

i=1

qi
∏

j=1

∑

T∈r
Nij
i

Nij
∏

t=1

P̂T (yt)







=
n
∑

i=1

qi
∑

j=1

log







∑

T∈r
Nij
i

Nij
∏

t=1

P̂T (yt)







=

n
∑

i=1

qi
∑

j=1

CNij
(Mri

),

where r
Nij

i is the set of all sequences of size Nij written with an alphabet with ri symbols,

P̂T (yt) is the frequency of yt in T andMri
is the set of all multinomial distributions with ri

parameters. It is easy to see that the score given by

fNML(B|T ) = LL(B|T )− fCT (BG)

decomposes over the network structure, and that maximizing it is equivalent to maximizing

fNML(B|T ) =
n
∑

i=1

qi
∑

j=1

(

ri
∑

k=1

Nijk log

(

Nijk

Nij

)

−CNij
(Mri

)

)

. (14)

Finally, we note that from the definition, the computation of CNij
(Mri

) seems exponential

in Nij, since it involves an exponential sum over all possible data of size Nij. However, it was

recently proposed [KM07] a linear-time algorithm for computing the stochastic complexity in

the case of Nij observations of a single multinomial random variable. For that purpose an

elegant recursion formula was proposed based on the mathematical technique of generating

functions. The algorithm for computing the multinomial parametric complexity is presented

in Algorithm 1.

Algorithm 1 Multinomial parametric complexity

Compute CNij
(Mri

) = log(C(ri, Nij)) where C(`, m) is obtained by the following recurrence:

1. C(1, m) = 1.

2. C(2, m) =
∑

h1+h2=m

m!

h1!h2!

(

h1

m

)h1
(

h2

m

)h2

.

3. If (` > 2) then C(`, m) = C(` − 1, m) + m
`−2

C(` − 2, m).
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Since the NML score (Equation (12)) is intractable, we will only consider the fNML score

(Equation (14)), and for the sake of simplicity we will drop the ’f’ and write just NML for

fNML.

MIT scoring function

A scoring function based on mutual information, called mutual information tests (MIT) score,

was proposed by de Campos [dC06] and its expression is given by:

MIT(B|T ) =

n
∑

i=1
ΠXi

6=∅



2NI(Xi; ΠXi
)−

si
∑

j=1

χα,liσ∗

i
(j)





where I(Xi; ΠXi
) is the mutual information between Xi and ΠXi

in the network which mea-

sures the degree of interaction between each variable and its parents. This measure is, how-

ever, penalized by a term related to the Pearson χ2 test of independence. This term attempts

to re-scale the mutual information values in order to prevent them from systematically in-

creasing as the number of variables in ΠXi
does, even when newly added variables in ΠXi

are independent of Xi. In this penalization component, α is a free parameter representing

the confidence level associated with the statistical test (for instance, 0.90, 0.95 or 0.99) and,

σ∗
i = (σ∗

i (1), . . . , σ
∗
i (si)) denotes any permutation of the index set (1, . . . , si) of the variables

in ΠXi
= {Xi1, . . . ,Xisi

} satisfying riσ∗

i (1) ≥ riσ∗

i (2) ≥ · · · ≥ riσ∗

i (si), where rij represents

the number of possible configurations when the parent set of Xi is restricted only to Xj .

Moreover, the number of degrees of freedom liσ∗

i (j) is given by:

liσ∗

i
(j) =







(ri − 1)(riσ∗

i (j) − 1)
∏j−1

k=1 riσ∗

i (k) j = 2, . . . , si

(ri − 1)(riσ∗

i (j) − 1) j = 1.

2.2 Decomposability and score equivalence

For efficiency purposes, a scoring function being used in the context of a score+search method

needs to have the property of decomposability.

Definition 2.11 (Decomposable scoring function) A scoring function φ is decomposable

if the score assigned to each network decompose over the network structure in such a way

that it can be expressed as a sum of local scores that depends only on each node and its
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parents, that is, scores of the following form:

φ(B,T ) =
n
∑

i=1

φi(ΠXi
, T ).

When considering the search in the space of equivalence classes of network structures score

equivalent scoring functions are particularly interesting. The definition of score-equivalent

scoring functions need some background in Bayesian network theory which is introduced

next.

Two variables X and Y are adjacent if there is an edge between X and Y .

Definition 2.12 (v-structure) In a directed acyclic graph, a v-structure is a local depen-

dency X → Z ← Y such that X and Y are not adjacent.

Theorem 2.13 (Verma and Pearl [VP90]) Two directed acyclic graphs are equivalent if

and only if they have the same skeleton and the same v-structures.

By Theorem 2.13, all trees network structures with the same skeleton are equivalent,

regardless from the direction of the edges.

Because DAG equivalence is reflexive, symmetric, and transitive, it defines a set of equiv-

alence classes over DAG’s. One way to represent the equivalence class of equivalent DAG’s is

by the means of a partially directed acyclic graph.

Definition 2.14 (Partially directed acyclic graph) A partially directed acyclic graph is

a graph which contains both directed and undirected edges, with no directed cycle in its

directed subgraph.

From Theorem 2.13, it follows that a PDAG containing a directed edge for every edge

participating in a v-structure, and an undirected edge for every other edge, uniquely identifies

an equivalence class of DAG’s. There may be many other PDAG’s, however, that correspond

to the same equivalence class. For example, any DAG interpreted as a PDAG can be used to

represent its own equivalence class.

Definition 2.15 (Compelled edge) A directed edge X → Y is compelled in a directed

acyclic graph G if for every directed acyclic graph G′ equivalent to G, X → Y exists in G′.
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By Theorem 2.13, all edges participating in a v-structure are compelled. Not every com-

pelled edge, however, necessarily participates in a v-structure. For example, the edge Z → W

in the DAG with edges E = {X → Z,Z → W,Y → Z, Y → U} is compelled. Moreover, for

any edge e in G, if e is not compelled in G, then e is reversible in G. In that case, there exists

some DAG G′ equivalent to G in which e has opposite direction.

Definition 2.16 (Essential graph) An essential graph, denoting an equivalence class of

directed acyclic graphs, is the partially directed acyclic graph consisting of a directed edge

for every compelled edge in the equivalence class, and an undirected edge for every reversible

edge in the equivalence class.

Essential graphs are used to represent equivalent class of network structures during Bayesian

network learning. The essential graph of a tree network structure is its skeleton.

Definition 2.17 (Score equivalent scoring function) A scoring function φ is score equiv-

alent if it assigns the same score to all directed acyclic graphs that are represented by the

same essential graph.

All interesting scoring functions in the literature are decomposable, since it is unfeasible

to learn undecomposable scores. LL, AIC, BIC/MDL are decomposable and score equivalent,

whereas K2, BD, BDe, BDeu, NML and MIT are decomposable but not score equivalent. The

score equivalence property is mandatory when searching in the space of equivalence classes

of network structures. However, in general, it does not seem to be an important property.

Indeed, non-score-equivalent scoring functions typically perform better than score equivalent

ones [dC06, YC02].

2.3 Chow-Liu tree learning algorithm

A tree Bayesian network is a Bayesian network where the underlying DAG is a directed tree.

Finding the tree Bayesian network that maximizes the LL score given data T can be done in

polynomial time by the Chow-Liu tree learning algorithm [CL68].

In order to understand how to solve the learning problem for tree Bayesian networks

we need to reformulate the LL(B|T ), presented in Equation (8), using mutual information
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[Bou95]. Applying Equation (1) to the log-likelihood given by

LL(B|T ) =

N
∑

t=1

log(PB(yt)) (15)

we obtain that

LL(B|T ) = N

n
∑

i=1

qi
∑

j=1

ri
∑

k=1

P̂T (Xi = xik,ΠXi
= wij) log(θijk) (16)

where P̂T is the empirical distribution defined by the frequency of each possible configuration

{Xi} ∪ΠXi
in T . More precisely,

P̂T (Xi = xik,ΠXi
= wij) =

Nijk

N
.

From Gibb’s inequality (Lemma 2.8), Equation (16) is maximized when

θijk = P̂T (Xi = xik|ΠXi
= wij) =

Nijk

Nij

. (17)

Thus, by fixing the underlying DAG of a Bayesian network B, the choice of parameters θijk

that maximizes LL(B|T ) is given by Equation (17). This means that it is enough to search

for the underlying DAG of B that maximizes the LL score. From this point on it is assumed

that the parameters of B fulfill Equation (17) and, so, Equation (16) can be rewritten as

follows:

LL(B|T ) = −N
n
∑

i=1

H
P̂T

(Xi|ΠXi
)

= N

n
∑

i=1

I
P̂T

(Xi; ΠXi
)−N

n
∑

i=1

H
P̂T

(Xi), (18)

where I
P̂T

(Xi; ΠXi
) is the mutual information between Xi and ΠXi

, and H
P̂T

is the entropy

both given by the empirical distribution. Observe that the right-hand side of (18) has two

terms and only the first depends on the Bayesian network B, hence, maximizing LL(B|T )

resumes to maximize
n
∑

i=1

I
P̂T

(Xi; ΠXi
) =

n
∑

i=1
i6=R

I
P̂T

(Xi;Xπ(i))

where R is the root of the tree Bayesian network B and π(i) is the index of the parent variable

of Xi, that is, ΠXi
= {Xπ(i)} for i 6= R. Recall that the mutual information of two random

vectors is given by

I(X;Y) =
∑

x,y

P (x,y) log
P (x,y)

P (x)P (y)
. (19)
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The main idea of the algorithm to learn tree Bayesian networks is to consider a complete

weighted undirected graph, where each undirected edge between Xi and Xj is weighted with

the mutual information between Xi and Xj . Given this, the problem reduces to determining

a maximal weighted (undirected) spanning tree. After computing such spanning tree, a

direction has to be assigned to each edge of the tree. This is done by choosing an arbitrary

node as the tree root and then setting the direction of all edges to be outward from it. The

detail of the algorithm is depicted in Algorithm 2.

Algorithm 2 Chow-Liu tree learning algorithm, for the LL score

1. Compute the mutual information I
P̂T

(Xi;Xj) between each pair of attributes, with i 6= j and i, j ≤ n, given by

Equation (19).

2. Build a complete undirected graph with attributes X1, . . . , Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by I
P̂T

(Xi; Xj).

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it and return the resulting tree.

The resulting directed tree is called Chow-Liu tree or optimal branching. Chow-Liu [CL68]

showed that Algorithm 2 is linear on the size of the data T and quadratic on the number of

variables of the Bayesian network.

Theorem 2.18 (Chow and Liu [CL68]) Let T be a collection of N instances of X1, . . . ,Xn.

Algorithm 2 constructs an optimal branching B that maximizes LL(B|T ) in O(n2N) time.

2.4 Extending Chow-Liu tree learning algorithm

The Chow-Liu tree learning algorithm was originally proposed for maximizing the LL score

but it can be easily adapted to deal with any scoring function that is decomposable and/or

score equivalent.

According to Heckerman et al [HGC95], finding an optimal branching for decomposable

and score equivalent scoring functions reduces to weighting each undirected edge between Xi

and Xj by φj({Xi}, T )−φj(∅, T ), which is equal to φi({Xj}, T )−φi(∅, T ) by score equivalence

of φ, and to find a maximal weighted (undirected) spanning tree. The detailed algorithm for

learning tree Bayesian networks for decomposable ans score-equivalent scoring functions is

presented in Algorithm 3.
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Algorithm 3 Learning tree Bayesian networks, for any decomposable and score equivalent φ–score

1. Compute φj({Xi}, T ) − φj(∅, T ) between each pair of attributes Xi and Xj , with i 6= j and i, j ≤ n.

2. Build a complete undirected graph with attributes X1, . . . , Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by the value computed in the previous step.

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it and return the resulting tree.

Learning an optimal branching for scoring functions that are only decomposable, but not

score equivalent, can also be done in polynomial time [HGC95]. In this case, however, an

edge between Xi and Xj may score differently depending on its direction, and so a directed

spanning tree must be found (instead of an undirected one). The idea is to weight each

directed edge from Xi to Xj with φj({Xi}, T ) − φj(∅, T ) and then find an optimal directed

spanning tree with Edmonds’ algorithm [Edm67, Law76]. The detailed algorithm for learning

tree Bayesian networks for scoring functions that are only decomposable, but not score-

equivalent, is presented in Algorithm 4.

Algorithm 4 Learning tree Bayesian networks, for any decomposable and non-score equivalent φ–score

1. Compute φj({Xi}, T ) − φj(∅, T ) for each edge from Xi to Xj , with i 6= j and i, j ≤ n.

2. Build a complete directed graph with attributes X1, . . . , Xn as nodes. Annotate the weight of the edge from Xi to

Xj by the value computed in the previous step.

3. Build a maximal weighted directed spanning tree and return it.

3 Bayesian network classifiers

Bayesian networks have been widely used in the context of classification [SZ06, GD04, FGG97,

DH73]. Herein, we introduce the concept of Bayesian network classifier and then present the

Tree Augmented Naive Bayes [FGG97] classifier.

Definition 3.1 (Bayesian network classifier) A Bayesian network classifier is a Bayesian

network where X = (X1, . . . ,Xn, C). The variables X1, . . . ,Xn are called attributes and C is

called the class variable. Moreover, the graph structure G is such that the class variable has

no parents, that is, ΠC = ∅, and all attributes have at least the class variable as parent, that

23



is, C ∈ ΠXi
. The corresponding classifier is defined as

arg max
C

PB(C|X1, . . . ,Xn).

We therefore reformulate the model to make it more tractable. Using the definition of

conditional probability and Equation (1) leads to the following classifier:

arg max
C

PB(C)
n
∏

i=1

θXi|ΠXi
.

Informally, the problem of learning a Bayesian network classifier can be recasted as the

problem of learning a Bayesian network where all attributes have the class variable as parent.

3.1 Tree augmented naive Bayesian network classifier

The tree augmented naive (TAN) Bayesian network was first proposed by Friedman et al

[FGG97]. It is a classifier which restricts correlations between the attributes of the network

to a tree structure.

Definition 3.2 (Tree augmented naive Bayesian network) A tree augmented naive

Bayesian network (TAN) [FGG97] is a Bayesian network classifier where there exists a root

R ∈ {1, . . . , n} such that ΠXR
= {C} and ΠXi

= {C,Xj} for all 1 ≤ i ≤ n with i 6= R.

In order to understand how to solve the learning problem for TAN Bayesian networks we

need to reformulate the LL(B|T ) using mutual information as in (18). With TAN models

however we have to consider the class variable and so,

LL(B|T ) = −N

n
∑

i=1

H
P̂T

(Xi|ΠXi
, C)

= N
n
∑

i=1

I
P̂T

(Xi; ΠXi
, C)−N(H

P̂T
(C) +

n
∑

i=1

H
P̂T

(Xi)) (20)

Observe that the right-hand side of (20) has two terms and only the first depends on the

Bayesian network B, hence, maximizing LL(B|T ) resumes to maximize

n
∑

i=1

I
P̂T

(Xi; ΠXi
, C). (21)

We can simplify (21) for TAN models using the chain law for mutual information,

I(X;Y,Z) = I(X;Z) + I(X;Y|Z),
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and derive
n
∑

i=1

I
P̂T

(Xi;C) +

n
∑

i=1
i6=R

I
P̂T

(Xi;Xπ(i)|C). (22)

Finally, note that the first term of (22) does not depend on the choice of the parents π(i),

therefore, maximizing LL(B|T ) is equivalent to maximize

n
∑

i=1
i6=R

I
P̂T

(Xi;Xπ(i)|C). (23)

Recall that the conditional mutual information is given by

I(X;Y|Z) =
∑

x,y,z

P (x,y, z) log
P (x,y|z)

P (x|z)P (y|z)
. (24)

It is now easy to find the TAN that maximizes the LL score for some data T . The main

idea is to consider a complete weighted undirected graph, where each edge between Xi and

Xj is weighted with the conditional mutual information between Xi and Xj given the class

variable C. Given this, the problem reduces to determining a maximal weighted (undirected)

spanning tree. After computing such spanning tree, a direction has to be assigned to each

edge of the tree. This is done by choosing an arbitrary attribute as the tree root and then

setting the direction of all edges to be outward from it. The TAN Bayesian network classifier

is then built by adding a node labeled by C, and adding an arc from C to each tree node.

The detail of the algorithm is depicted in Algorithm 5.

Algorithm 5 Learning TAN Bayesian network classifiers, for the LL score

1. Compute I
P̂T

(Xi; Xj |C) between each pair of attributes, with i 6= j and i, j ≤ n, given by Equation (24).

2. Build a complete undirected graph with attributes X1, . . . , Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by I
P̂T

(Xi; Xj |C).

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it.

5. Construct a TAN Bayesian network classifier by adding a node labeled by C and adding an arc from C to each Xi,

i ≤ n.

The proof of soundness of Algorithm 5 follows from the derivation that led to Equation (23)

and from the fact that we are computing a maximal weighted spanning tree. Since the step

that consumes asymptotically more time is weighting the edges, Algorithm 5 is linear on the

size of the data T and quadratic on the number of variables of the Bayesian network.
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Theorem 3.3 (Friedman, Geiger and Goldszmidt [FGG97]) Let T be a collection of

N instances of X1, . . . ,Xn. Algorithm 5 constructs a TAN Bayesian network B that maxi-

mizes LL(B|T ) in O(n2N) time.

3.2 Extending tree augmented naive Bayesian network classifier

The TAN learning algorithm was originally proposed for maximizing the LL score but it can

be easily adapted to deal with any scoring function that is decomposable and score equivalent.

According to Heckerman et al [HGC95], finding an optimal TAN classifier for decompos-

able and score equivalent scoring functions reduces to weighting each undirected edge between

Xi and Xj by φj({Xi, C}, T )− φj({C}, T ), which is equal to φi({Xj , C}, T )− φi({C}, T ) by

score equivalence of φ, and to find a maximal weighted (undirected) spanning tree. The

detailed algorithm for learning TAN Bayesian network classifiers for decomposable ans score-

equivalent scoring functions is presented in Algorithm 6.

Algorithm 6 Learning TAN Bayesian network classifiers, for any decomposable and score equivalent φ–score

1. Compute φj({Xi, C}, T ) − φj({C}, T ) between each pair of attributes Xi and Xj , with i 6= j and i, j ≤ n.

2. Build a complete undirected graph with attributes X1, . . . , Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by the value computed in the previous step.

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it.

5. Construct a TAN Bayesian network classifier by adding a node labeled by C and adding an arc from C to each Xi,

i ≤ n.

Learning an optimal TAN classifier for scoring functions that are only decomposable, but

not score equivalent, can also be done in polynomial time [HGC95]. In this case, however, an

edge between Xi and Xj may score differently depending on its direction, and so a directed

spanning tree must be found (instead of an undirected one). The idea is to weight each

directed edge from Xi to Xj with φj({Xi, C}, T ) − φj({C}, T ) and then find an optimal

directed spanning tree with Edmonds’ algorithm [Edm67, Law76]. The detailed algorithm for

learning TAN Bayesian network classifiers for scoring functions that are only decomposable,

but not score-equivalent, is presented in Algorithm 7.
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Algorithm 7 Learning TAN Bayesian network classifiers, for any decomposable and non-score equivalent φ–score

1. Compute φj({Xi, C}, T ) − φj({C}, T ) for each edge from Xi to Xj , with i 6= j and i, j ≤ n.

2. Build a complete directed graph with attributes X1, . . . , Xn as nodes. Annotate the weight of the edge from Xi to

Xj by the value computed in the previous step.

3. Build a maximal weighted directed spanning tree.

4. Construct a TAN Bayesian network classifier by adding a node labeled by C and adding an arc from C to each Xi,

i ≤ n.

4 Experiments on the UCI repository data

We implemented the Chow-Liu tree learning algorithm and its extensions in Mathematica 6.0,

on top of the Combinatorica package [PS03]. The package was extended with a non-recursive,

and efficient, version of Edmonds’ algorithm to build a maximal directed spanning tree of a

strongly connected weighted directed graphs.2 A package to learn Bayesian network classifiers

was implemented, and at the moment it allows to learn an optimal TAN classifier for any score

discussed in this work. The package also contains the entropy based discretization algorithm

[FI93] to deal with continuous datasets.

We ran our experiments on several datasets from the UCI repository [NHBM98]. The

chosen datasets are presented in Table 1.

The information-theoretic scores used in the experiments were the LL, BIC/MDL, NML

and the MIT with a 99% confidence level. The Bayesian scores considered were the K2 and

BDeu with equivalent sample sizes 1, 4 and 16. The accuracy of each classifier is based on the

percentage of successful predictions on the test sets of each dataset. Accuracy was measured

via the holdout method for larger training sets, and via 5-fold cross-validation for smaller

ones [Koh95]. Results are presented in Table 2, where the accuracy is annotated by a 95%

confidence interval.

In general all scores perform similarly. The Bayesian scores hardly distinguish among each

other, except for the soybean-large dataset. For large datasets Bayesian scores perform well.

The only significant result is the performance of NML in the soybean-large dataset, which is

impressive. The NML score also performs well in vote and glass, which indicates that this is

a good score for small datasets. These conclusions were taken from the results presented in

2Impressively, although package Combinatorica has an extensive library of graph algorithms, it misses this

important and non-trivial algorithm.
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Dataset n |DC | Train Test

letter 16 26 15000 5000

satimage 36 6 4435 2000

chess 36 2 2130 1066

vehicle 18 4 846 CV-5

diabetes 8 2 768 CV-5

soybean-large 35 19 562 CV-5

vote 16 2 435 CV-5

heart 13 2 270 CV-5

glass 9 7 214 CV-5

iris 4 3 150 CV-5

lymphography 18 4 148 CV-5

hepatitis 19 2 80 CV-5

Table 1: Description of the datasets used in the experiments. The datasets are presented by

decreasing size of the training set.

the following table and figures.

28



Data set LL BIC/MDL NML MIT(0.99) K2 BDeu(1) BDeu(4) BDeu(16)

letter 78.48 ± 1.13 77.96 ± 1.15 75.02 ± 1.20 77.98 ± 1.15 82.14 ± 1.06 82.25± 1.06 82.12± 1.06 82.20± 1.06

satimage 78.55 ± 1.80 78.00 ± 1.81 78.00 ± 1.81 78.45 ± 1.80 77.39 ± 1.83 77.39 ± 1.83 77.05 ± 1.83 77.25 ± 1.83

chess 89.06 ± 1.87 88.03 ± 1.94 88.13 ± 1.93 88.03 ± 1.94 88.50 ± 1.91 88.50 ± 1.91 88.50 ± 1.91 88.41 ± 1.91

vehicle 67.69± 1.61 62.60 ± 1.67 63.07 ± 1.66 62.84 ± 1.66 67.57 ± 1.61 67.93± 1.61 67.46± 1.61 68.17± 1.60

diabetes 77.91 ± 1.50 77.91 ± 1.50 76.99 ± 1.52 76.99 ± 1.52 77.65 ± 1.51 77.65 ± 1.51 77.65 ± 1.51 77.65 ± 1.51

soybean-large 61.07 ± 2.06 84.29 ± 1.53 92.14 ± 1.14 88.39 ± 1.35 72.66 ± 1.88 62.50 ± 2.05 62.32 ± 2.05 62.86 ± 2.04

vote 92.17 ± 1.77 92.61 ± 1.73 95.21 ± 1.41 93.48 ± 1.63 93.48 ± 1.63 93.91 ± 1.58 93.91 ± 1.58 93.91 ± 1.58

heart 85.19 ± 2.16 85.19 ± 2.17 84.07 ± 2.22 84.07 ± 2.22 84.07 ± 2.22 84.07 ± 2.22 84.07 ± 2.22 84.07 ± 2.22

glass 93.81 ± 1.66 88.57 ± 2.20 95.24 ± 1.47 92.38 ± 1.83 92.86 ± 1.78 93.81 ± 1.66 91.90 ± 1.88 91.90 ± 1.88

iris 93.33 ± 2.03 92.00 ± 2.21 92.67 ± 2.12 93.33 ± 2.03 92.67 ± 2.12 93.33 ± 2.03 92.67 ± 2.13 93.33 ± 2.02

lymphography 79.31 ± 3.36 77.93 ± 3.44 77.24 ± 3.48 74.48 ± 3.62 74.48 ± 3.62 74.48 ± 3.62 73.79 ± 3.65 73.10 ± 3.68

hepatitis 95.00± 2.44 96.25 ± 2.12 93.75 ± 2.71 93.75 ± 2.71 86.25 ± 3.85 83.75 ± 4.12 86.25 ± 3.85 85.00 ± 3.99

Table 2: Experimental results for all discussed scores and for datasets in Table 1. Results in bold are significant in the sense that

their confidence interval does not intersect the remaining ones. Observe that for large datasets Bayesian scores perform well, whereas

for small datasets information-theoretic scores perform better, in particular, NML seems the best.
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Figure 1: Accuracy curves comparing all discussed scores for datasets in Table 1. The horizontal axis lists the datasets and the vertical

axis measures the percentage of test instances that were well classified. Each data point is annotated by a 95% confidence interval.

Observe that all metrics perform more or less the same, with the exception of letter, vehicle, soybean-large and hepatitis datasets,

where some confidence intervals of different scores do not overlap.
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Figure 2: Accuracy curves comparing all discussed Bayesian scores for datasets in Table 1. The horizontal axis lists the datasets and

the vertical axis measures the percentage of test instances that were well classified. Each data point is annotated by a 95% confidence

interval. Observe that all Bayesian metrics perform more or less the same, with K2 performing slightly better in soybean-large dataset.
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Figure 3: Accuracy curves comparing all discussed information-theoretic scores for datasets in Table 1. The horizontal axis lists the

datasets and the vertical axis measures the percentage of test instances that were well classified. Each data point is annotated by a

95% confidence interval. Observe that LL performs well for large datasets whereas the NML score seems the best for small ones.
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Figure 4: Accuracy curves comparing LL, NML and K2 scores, for datasets in Table 1. The horizontal axis lists the datasets and the

vertical axis measures the percentage of test instances that were well classified. Each data point is annotated by a 95% confidence

interval. Observe that for large datasets LL and K2 perform more or less the same, with the exception of letter where the K2 is the

best. For small datasets NML score is in general the best choice, and LL performs better than K2.
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5 Conclusions

The purpose of this work was to benchmark Bayesian network scoring functions for classifi-

cation. We presented all scores known in the literature together with their justification. We

measured the performance of the scores in the task of learning a TAN classifier over UCI

datasets. The results show that Bayesian scores are hard to distinguish, performing well for

large datasets. The most impressive result was due to the NML score for the soybean-large

dataset. It seems that a good choice is to consider K2 for large datasets and NML for small

ones.

Future work includes proposing a decomposable score based on conditional likelihood,

that will minimize the entropy between the class variable given the values of the attributes,

and not the joint entropy of the class variable and the attributes. A version of this score for

small datasets endowed with a NML-like penalization should perform very well for biological

datasets, such as those used for finding binding sites.
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