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Abstract. We introduce a Bayesian network classifier less restrictive
than Naive Bayes (NB) and Tree Augmented Naive Bayes (TAN) clas-
sifiers. Considering that learning an unrestricted network is unfeasible
the proposed classifier is confined to be consistent with the breadth-
first search order of an optimal TAN. We propose an efficient algorithm
to learn such classifiers for any score that decompose over the network
structure, including the well known scores based on information theory
and Bayesian scoring functions. We show that the induced classifier al-
ways scores better than or the same as the NB and TAN classifiers.
Experiments on modeling transcription factor binding sites show that,
in many cases, the improved scores translate into increased classification
accuracy.

1 Introduction

Learning Bayesian networks has been a hot and fruitful research topic [23}15]
[BI7]. The goal of learning a Bayesian network is to find both the structure
and the parameters of the network that best fit the data, according to a given
scoring function. The inference of a general Bayesian network has been shown
to be an NP-hard problem [5], even for approximate solutions [7]. As a conse-
quence, heuristic algorithms became the standard methodology for addressing
this problem [23]. A common approach is to impose restrictions over the net-
work structure. In this context, two results set the border between efficient and
non-efficient structure learning. In one hand, Chow and Liu showed that trees
can be learned in polynomial time [4], on the other hand, Dasgupta proved that
learning 2-polytrees is NP-hard [§].

Bayesian networks have been widely used in the context of classification [21],
[I614]. The simplicity and high accuracy of the Naive Bayes (NB) classifier [I1]
have led to its extensive use, and to several attempts to extends it. In this line of
research Friedman et al [I4] proposed the Tree Augmented Naive Bayes (TAN)
classifier in order to overcome the strong independence assumptions imposed by
the NB network. The TAN is an extension of NB which allows additional edges

M.A. Orgun and J. Thornton (Eds.): AI 2007, LNAI 4830, pp. 16 2007.
© Springer-Verlag Berlin Heidelberg 2007



Efficient Learning of Bayesian Network Classifiers 17

between the attributes of the network in order to capture correlations among
them. Such correlations are however restricted to a tree structure. Friedman et
al showed that TAN was indeed more accurate than NB on benchmark datasets.

Herein, we introduce a Bayesian network classifier less restrictive than NB and
TAN classifiers. Considering that learning an unrestricted network is unfeasible,
the underlying graph of the proposed classifier is confined to be consistent with
the breadth-first search (BFS) order of an optimal TAN and to have a bounded
in-degree, henceforward called BFS-consistent k-graph (BCkG). We show that
learning BCEG’s can be done efficiently and for any scoring functions that decom-
poses over the network structure. Well known scores with this property are those
based on information theory, such as log likelihood (LL), Akaike information cri-
terion (AIC), Bayesian information criterion (BIC), minimum description length
(MDL); and Bayesian scoring function such as K2, Bayesian Dirichlet (BD) and
its variants (BDe, BDeu), and mutual information test (MIT). We show that
the classifiers induced from BCEG’s score always better than or the same as the
NB and TAN classifiers, and moreover that the search space of the learning al-
gorithm is exponentially larger than the TAN learning algorithm. We check the
quality of our approach with biological data. Experiments show that, in many
cases, the improved scores translate into increased classification accuracy.

The paper is organized as follows. In Section 2, we briefly revise Bayesian
networks, Bayesian network classifiers and their learning algorithms. In Section
3, we introduce the main contribution of this paper, the learning algorithm for
BCEG classifiers. In Section 4, we apply our approach in the realm of computa-
tional biology, namely to model transcription factor binding sites, and present
some experimental results. Finally, in Section 5 we draw some conclusions and
discuss future work.

2 Basic Concepts and Results

In this section we introduce some notation, while recalling relevant concepts
and results concerning Bayesian networks which are directly related with the
contribution of this paper.

2.1 Bayesian Networks

A Bayesian network is a triple B = (X,G,0). The first component X =
(X4,...,X,) is afinite random vector where each random variable X; ranges over
a finite domain D;. We denote the joint domain D = II* ; D,. The second com-
ponent G = (N, E) is a directed acyclic graph with nodes N = {X1,..., X,,} and
edges E representing direct dependencies between the variables. The third com-
ponent © encodes the parameters {6, ., }xep of the network, where 6, ., =
Pg(z;|11,,) for each possible value x; of X;, and II,, of ITx,, where IIx, de-
notes the set of parents of X; in G. A Bayesian network defines a unique joint
probability distribution over X given by
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P(X1,.... Xn) = [[ 0x.1115, - (1)
i=1

We denote the set of all Bayesian networks with n variables by B,,.

Informally, a Bayesian network encodes the independence assumptions over
the component random variables of X. An edge (i,j) in E represents a direct
dependency of X; to X;. Moreover X; is independent of its non descendants
given its parents IIx, in G.

The problem of learning a Bayesian network given data 7' consists on finding
the Bayesian network that best fits the data 7. In order to quantify the fitting
of a Bayesian network a scoring function ¢ : B, x D™ — R is considered.
In this context, the problem of learning a Bayesian network can be recasted
to the following optimization problem. Given a dataset T = {x1,...,X,,} and
a scoring function ¢, the problem of learning a Bayesian network is to find a
Bayesian network B € B,, that maximizes the value ¢ for T'.

Several scoring functions have been proposed in the literature [6]17,[18]22].
The discussion of the advantages and disadvantages of each of these functions is
outside the scope of this paper.

2.2 Bayesian Network Classifiers

A Bayesian network classifier is a Bayesian network where X = (X1, ..., X, C).
The variables X1, ..., X, are called attributes and C'is called the class variable.
Moreover, the graph structure G is such that the class variable has no parents,
that is, IIc = 0, and all attributes have at least the class variable as parent,
that is, C' € IIx,. The corresponding classifier is defined as

argm(:;yuxPB(C|X17 coy Xp).

We therefore reformulate the model to make it more tractable. Using the defini-
tion of conditional probability and Equation () leads to the following classifier:

arg mgx Pg(C) lj[l 9X1~|Hxi .

Informally, the problem of learning a Bayesian network classifier can be re-
casted as the problem of learning a Bayesian network where all attributes have
the class variable as parent.

Naive Bayesian Network Classifier. A naive Bayesian network (NB) [11]
is a Bayesian network classifier where each attribute has the class variable as
its unique parent, that is, ITx, = {C} for all 1 < i < n. Since the NB has a
fixed graph structure, learning the network reduces to computing the empirical
distribution.

The NB classifier is one of the most effective classifiers, in the sense that,
in many cases, its predictive performance is competitive with state-of-the-art
classifiers [T0L@]. In fact, the NB classifier is computationally undemanding and
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shows an unexpected accuracy in many applications. However, the independence
assumption is too strict and relaxing this assumption may lead to more accurate
classification.

Tree Augmented Naive Bayesian Network Classifier. A tree augmented
naive Bayesian network (TAN) [14] is a Bayesian network classifier where there
exists an r € {1,...,n} such that IIx, = {C} and IIx, = {C,X;} for all
1 < i < n with ¢ # r. The TAN was first proposed by Friedman et al [T4] to
overcome the strong independence assumptions imposed by the NB network. In
fact, the TAN is an extension of NB which allows additional edges between the
attributes of the network in order to capture correlations among them. Such
correlations are however restricted to a tree structure.

In [14] an algorithm to find an optimal TAN that maximizes the LL is given.
The main idea is to consider a complete weighted undirected graph, where each
edge between X; and X; is weighted with the conditional mutual information
between X; and X given the class variable C'. Given this, the problem reduces
to determining a maximal weighted spanning tree, using the algorithm by Chow
and Liu [4]. After computing such spanning tree, a direction has to be assigned
to each edge of the tree. This is done by choosing an arbitrary attribute as the
tree root and then setting the direction of all edges to be outward from it.

Extending TAN Classifier to Deal with Decomposable Scores. The TAN
was originally proposed for maximizing the LL score but it can be easily adapted
to deal with any scoring function that is decomposable and score equivalent. We
recall that a scoring function ¢ is decomposable if it can be written as

¢(B,T)=> ¢:i(llx,,T). (2)
=1

Moreover, a scoring function is said to be score equivalent if it assigns the same
value to all directed acyclic graphs that are represented by the same essential
graph. All interesting scoring functions in the literature are decomposable, since
it is unfeasible to learn undecomposable scores. LL, AIC, BIC and MDL are
decomposable and score equivalent, whereas K2, BD, BDe, BDeu and MIT are
decomposable but not score equivalent.

According to Heckerman et al [I7], finding an optimal TAN classifier for de-
composable and score equivalent scoring functions reduces to weighting each
undirected edge between X; and X; by ¢; {X;,C},T) — ¢;({C},T), which is
equal to ¢;({X;,C},T) — ¢:({C},T) by score equivalence of ¢, and to find a
maximal weighted (undirected) spanning tree. Moreover, learning an optimal
TAN classifier for scoring functions that are only decomposable, but not score
equivalent, can also be done in polynomial time. In this case, however, an edge
between X; and X; may score differently depending on its direction, and so a
directed spanning tree must be found (instead of an undirected one). The idea is
to weight each directed edge from X; and X; with ¢;({X;,C},T) —¢;({C},T)
and then, for each node X, find an optimal directed spanning tree rooted at X,
with Edmonds’ algorithm [12]
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3 BFS-Consistent Bayesian Network Classifiers

We now introduce the main contribution of this paper, a simple and effective
heuristic for a causality order between the attributes based on a breadth-first
search (BFS) over an optimal TAN. The main idea is to take the total order
induced by the BFS over an optimal TAN and then search for an optimal network
(of bounded in-degree) consistent with it. It is easy to show that the score of
the resulting network is always greater than or equal to the score of TAN and
NB. The foremost benefit of this approach is that learning such an optimal
network can be done efficiently, that is, in polynomial time over the number of
attributes. Moreover, the class of the networks consistent with the BFS order
is exponentially larger, in the number of variables, when compared to TAN
networks.

We start by introducing some auxiliary concepts. A k-graph is a graph where
each node has in-degree at most k. Trees and forests are 1-graphs.

Definition 1 (BFS-consistent k-graph). Given a TAN R with a set of at-
tributes N, a graph G = (N, E) is said to be a BFS-consistent k-graph (BCkG)
w.r.t R if it is a k-graph and for any edge in £ from X; to X; the node X; is
visited in breadth-first search (BFS) of R before X ;. Henceforward, we denote
by B, the set of all BCkG’s w.r.t. R.

The above definition of consistency imposes that there can only exist an edge
from X; to X in G € Bf, if X is less than or as deep as X in R. We assume that
if i < j and X; and X; are at the same level, then the BFS over R reaches X;
before X ;. Other approaches to order attributes at the same level are discussed
in the conclusions.

Ezample 1. Given the underlying graph for the attributes of @ TAN R in (a), its
BFS is represented by a dashed line in (b). A BC2G w.r.t R is presented in (c).

< o ‘

() (b) ()

The core idea of the BCkG learning algorithm is to compute an optimal TAN R
and improve it by adding/removing dependencies which were omitted/present
because of the TAN structure restrictions. For efficiency purposes, the modified
model must be a BFS-consistent k-graph w.r.t. R. In this context, the total order
induced by the BFS over R might add dependencies from higher nodes to deeper
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nodes. In detail, the algorithm starts by computing an optimal TAN as described
in Section Then it performs a BFS over the optimal TAN to construct a
total order. Finally, it ranges over each attribute X;, generates the set «; of all
attributes less than X;, and takes as parents of X; the set S C «; such that
¢;(SU{C},T) is maximal over all subsets of a; with at most k attributes. The
pseudocode of the algorithm is presented in Algorithm [

Algorithm 1. Learning BCkG network classifiers
1. Run a (deterministic) algorithm that outputs an optimal TAN R according to ¢.
2. Compute the total order C induced by the BFS over R (ignoring the class variable).
3. For each attribute X; in R do:
(a) Compute the set a; = {X; € R: X; C X; and X; # X;}.
(b) For each subset S of a; with at most k attributes:
i. Compute ¢;(SU{C},T).
ii. If ¢;(SU{C},T) is the maximal score for X;, set IT; = S U{C}.
4. Output the directed graph G such that the parents of an attribute X; are II;.

Theorem 1 (Soundness). Algorithm [ constructs a BCkG Bayesian network
classifier that maximizes the ¢-score given data T'.

Proof. Since all potential parents for each node are checked, the algorithm re-
turns the k-graph G BSF-consistent w.r.t R with the highest score. Moreover,
this graph is acyclic since the parents of a node X; must be in «ay, that is, must
belong to the path in R from its root to X; (excluding X;). Moreover, it is easy to
see that for any path X;,, Xi,,... X;, in G we have that X, € o, for 1 < j <k.
If there existed a cycle X;,, X;,,... X;, it would imply that X;, € «;, which is
absurd. O

Proposition 1. Algorithm [ constructs a BCkG Bayesian network classifier
whose ¢-score is always greater than, or equal to, the ¢-score of the optimal
TAN.

Proof. Start by noticing that the soundness of Algorithm [ assures that the
resulting BCkG w.r.t R is the maximal among all BCkKG’s in B%. Moreover,
observe that the underlying graph Gz of the TAN R (without the class variable)
is BFS-consistent w.r.t R, that is, Gg € B}% for all k£ > 1. Hence, the soundness
of Algorithm [I] guarantees that the BN classifier Bg, constructed by adding an
edge from the class variable C' to all attributes in the output k-graph G, is such
that ¢(Bg,T) > ¢(R,T). O

Theorem 2 (Complexity). Algorithm[I]constructs a BCkG Bayesian network
classifier in O(n**1v(k,T)) time where v(k, T) is an upper bound for computing
o (SU{C}HT).

Proof. Step 2 takes O(n) time. Step 3a) takes O(n) time, while step 3b) takes
O(n*y(S,T)) time because it ranges over all subsets S with at most k elements
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(which takes O(n*) time) and for each of this sets it computes ¢;(S U {C},T)
(which takes O(~(S,T)) time. Thus, the overall complexity of the algorithm is
O(nF+1v(S,T)) time. ]

The theorems above assert the soundness and polynomial-time bound of the
BCEkG learning algorithm. At this point it remains to show that, despite consid-
ering an optimal TAN to confine the search space, the number of graphs searched
increases exponentially, in the number of attributes, when compared to TAN’s.

Proposition 2. Let R be a TAN with n attributes, then the number of non-

. . k2 _k_
trees in BY is at least 2%~ 2 ~2 7! when n > k.

Proof. We denote by (N,C) the total order induced by BFS over R (ignoring
the class variable). Since, this order is total (also called a linear), for any pair of
nodes X; and X; in N, with ¢ # j, we can say that a node X; is lower than X;
if and only if X; & Xj;. Given this, notice that the i-th node of R has precisely
(i — 1) lower nodes. We conclude that, when i > k(< n), there are at least 2%
subsets of N with at most k lower nodes. Moreover, when (1 <)i < k, only 2¢~1
subsets of N with at most k lower nodes exist. Thus,

n k

. .2 .

A ( I1 2‘“) x <H2”> =2
i=1

i=k+1

give us a lower bound for the total number of possible BCAG w.r.t R (recall that
a BC1G is also a BC2G, both a BC1G and a BC2G are also a BC3G, and so
on). Now, consider that X; is the root, and X is the child of the root in R. The
only two subsets of N with at most k lower elements than X, are () and {X,}.
This choice splits in two all BCkG’s in BY. Those for which the set of parents

of X is () cannot be trees since X; has no parents as well. Therefore, there are

k 2 .,
at lest |BQR| > onk=" —5-1 iy B% that are non trees. O

4 Experimental Methodology and Results

We compared the BC2G classifier with TAN and NB classifiers. We only con-
sidered discrete attributes and removed instances with missing values from the
datasets. As suggested by Friedman et al [I4] we improved the performance of
both TAN and BCkG classifiers by introducing an additional smoothing opera-
tion. This is particularly important in small datasets where the estimation of the
conditional probabilities, given the parent attributes plus the class variable, is
unreliable. NB classifiers are almost not affected by this problem since the data
is partitioned according to the class variable and, usually, the class variables are
adequately represented in the training set. The parameters of TAN and BCkG
networks were smoothed using Dirichlet priors [I7]. This amounts to adding 5
pseudo instances with conditional probabilities, given the parent attributes plus
the class variable, distributed according to the frequency of the corresponding
attribute in the training set.



Efficient Learning of Bayesian Network Classifiers 23

Modeling Transcription Factor Binding Sites

We wanted to evaluate our method in the context of computational biology.
There is a straightforward application of the BCkG model in the representation
of transcription factor binding sites.

An important part of gene regulation is mediated by specific proteins, called
the transcription factors, which influence the transcription of a particular gene
by binding to specific sites on DNA sequences, called transcription factor binding
sites (TFBS). Such binding sites are relatively short stretches of DNA, normally
5 to 25 nucleotides long. A commonly used representation of TFBS is a position
specific scoring matrices (PSSM). This representation assumes independence of
nucleotides in the binding sites, and so can be modeled by a Naive Bayes network.
Some works appeared that argued in the direction of non-additivity in protein-
DNA interactions [19] making a way for more complex models to appear which
account for nucleotide interactions. Barash et al had already obtained good re-
sults modeling TFBS with trees and mixtures of trees [I]. Recently, Sharon and
Segal also contributed in this direction [20]. Herein, we do preliminary evalua-
tion of the extent to which the richer BC2G models are beneficial in representing
TFBS.

The TRANSFAC database [13] contains hundreds of biologically validated
TFEFBS. We extracted 14 data sets of aligned binding sites from the TRANSFAC
database for which there were 20 or more sites. For each binding site we evaluated
the ability of NB, TAN and BC2G to describe the distribution underlying the
TFEFBS. We performed a 10 fold cross-validation test in each data set and the
results of the evaluation are presented in Figure [Il

35 T T T T T T 35 T T T T T T 35 T T T T T T
30 S 30 . . 30 . .
e
25 E 25 o - 25 | * A
. o, - o
2 20r 1 & 20} . . S 20} . -
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Fig. 1. Scatter plot comparing NB, TAN, and BC2G networks when modeling tran-
scription factor binding sites. Points above the diagonal line corresponds to data sets
on which the model in the z axis performs better than the model in the y axis.

5 Conclusions

This paper introduced a new heuristic to learn Bayesian network classifiers. The
proposed heuristic consists of improving an optimal TAN classifier by adding
important dependencies and removing irrelevant ones, guiding this process with
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the total order induced by the BFS over the optimal TAN. The advantage of
this restriction is twofold. First, the learning algorithm is polynomial. Second, as
Friedmann et al observed [I4], unrestricted learning does not necessarily outper-
forms TAN and NB due to overﬁttingﬂ and for this reason structure restriction
helps avoiding this problem. The proposed heuristic is an improvement over the
partial order based heuristic introduced in [2], adapted for classification. The
proposed classifier scores always better than both TAN and NB classifiers. More-
over, experiments on modeling transcription factor binding sites show that, in
many cases, the improved scores translate into increased classification accuracy.

Direction of future work include: instead of fixing an order for attributes
at the same level in the BFS (c.f. Section Bl comment after Definition [I), (i)
consider a random order over attributes at the same level or (ii) apply the TAN
algorithm solely to attributes at the same level and order them with a BFS over
the resulting TAN; combine and compare exhaustively our approach with other
state-of-the-art Bayesian network learning methods; extending BCkG to deal
with missing values and non discretized continuous variables; applying BCEG to
a wider variety of datasets.
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