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Abstract

We present in this paper an exact algorithm for motif extraction. Efficiency is achieved
by means of an improvement in the algorithm and data structures that applies to the
whole class of motif inference algorithms based on suffix trees. An average case complex-
ity analysis shows a gain over the best known exact algorithm for motif extraction, when
applied to extract long motifs. A full implementation was developed and made available
online. Experimental results show that the proposed algorithm is more than two times
faster than the best known exact algorithm for motif extraction, confirming in this way
the theoretical results obtained.
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bility.
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1 Introduction

Patterns appearing repeated either inside a same string or over a set of strings are important
objects to identify. Such repeated patterns are called motifs and their identification is called
motif inference or motif extraction.

The area has many potential applications, namely to data compression [4], natural lan-
guages, databases, basically, any activity or research requiring text mining [9]. The field of
application that concerns us is molecular biology. The motifs in this case may correspond to
functional elements in DNA, RNA or protein molecules, or to whole genes whose sequences
are strongly similar. In biological applications, it is mandatory to allow for some mismatches
between different occurrences of the same motif. In fact point mutations might have taken
place, as well as errors in the sequencing procedure, so that molecules that have the same
or related function(s), have no longer identical sequences. This is what makes the problem
difficult from the computational point of view.

In this paper we propose an exact algorithm for the extraction of motifs with mismatches.
In particular, we consider single and structured motifs, which are motifs composed of several
disjoint single motifs placed at given distances from each other. The extraction of structured
motifs appears particularly interesting because of its application to the detection of binding
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sites that respect a distance constraint (see for instance [7] for a biological motivation for
structured motifs). Given a text s, the problem is to find repeated patterns in s according
to some parameters that specify the frequency and the structure required for the motifs. In
molecular biology, the text is in general a set of DNA sequence.

Several exact [10, 3], heuristic [7, 8] and probabilistic [16, 15] algorithms for extracting
structured motifs exist. Up to date, the best known exact algorithms for the extraction of
single [13] and structured [3] motifs perform well when searching for short motifs. In this
paper, we propose an improvement to such algorithms in order to deal with long motifs. The
problem of extracting long motifs was first adressed by Pevzner and Sze [11]. They considered
a precise version of the motif discovery problem: find all single motifs of length 15 with at
most 4 mismatches in 20 sequences of size 600. In consequence several algorithms appeared
[11, 2, 5, 12]. A general set for this problem deserves attention from the algorithmic point of
view because its computational complexity is in the worst case exponential with respect to the
number e of mismatches allowed among different occurrences of the same motif. The reason
is that, to identify motifs of the required length, there can be an explosion of the number
of candidates of intermediate length whose extension has to be attempted. This imposes in
practice a limit to the length of the motifs themselves, as in many applications the value of
e depends on this length. The improvement introduced in this paper acts exactly in these
cases, and hence applies to relatively long motifs, being a way to increase the length of motifs
that are detectable in practice.

2 Single motif extraction

A single motif is a word over an alphabet Σ. Given an error rate e, a motif is said to e-occur in
a sequence if it occurs with at most e letters substitution. The single motif extraction problem

takes as input N sequences, a quorum q ≤ N , a maximal number e of mismatches allowed,
and a minimal and maximal length for the motifs, kmin and kmax, respectively. The problem
consists in determining all motifs that e-occur in at least q input sequences. Such motifs are
called valid. An efficient exact algorithm for the extraction of single motifs with mismatches
has been introduced in [13] and is based on a suffix tree. In a few words, motifs are considered
in lexicographical order starting from the empty word, and they are extended to the right as
long as the quorum is satisfied until either a valid motif of maximal length is found (if the
kmax length is reached), or the quorum is no longer satisfied. In both cases, a new motif is
attempted. At each step, all nodes spelling e-occurrences of the current motif are taken into
account. More formally, the algorithm presented in [13] we refer to is sketched in Algorithm 1,
where motif m is the one whose extension is being tried. At the beginning ExtractSingleMotif

Algorithm 1 Single motif extraction

ExtractSingleMotif(motif m)

1. for all α ∈ Σ do

2. if mα is valid then

3. if |mα| ≥ kmin then spell out the valid motif mα

4. if |mα| < kmax then ExtractSingleMotif(mα)

is called on the empty word. The algorithm recursively calls itself for longer motifs built by
adding letters (step 4), and considers new ones (step 1) when the extension fails (step 2).
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A valid motif is spelled out whenever a motif whose length lies within the required minimal
and maximal length is being considered (step 3). The order in which motifs are generated
corresponds to a depth-first visit of a complete trie M of all words of length kmax on the
alphabet Σ. We refer to M as the motif tree. In fact, the algorithm does not need to allocate
the motif tree. The only memory requirement is for the suffix tree T . Assuming that the
required length of the motif is k (that is kmin = kmax = k), and that at most e mismatches
are allowed, the algorithm has worst case time complexity in O(Nnkν(e, k)), where nk is the
number of tree nodes at depth k, and ν(e, k) is the number of words of length k that differ
in at most e letters from a word m of length k. This value does not depend on m, and it
holds that ν(e, k) ≤ ke|Σ|e. This upper bound is in practice not tight. Nevertheless, no better
bound can be given and therefore the time complexity is linear in the input size, but possibly
exponential in the number e of mismatches. Since reasonable values for e are proportional to
the value of k, this actually places a practical bound on the length required for the motifs.
The goal of this paper is to move this bound. Finally, the space complexity is O(Nnk).

2.1 Using maximal extensibility of factors

The modification we suggest consists in storing information concerning maximal extensibility
in order to avoid trying to extend hopeless motifs. For instance (see Figure 1), assume that
in our virtual depth-first visit of the motif tree, we have found out that motif m can be
further extended without losing the quorum up to a length of MaxExt(m) only, the latter
representing its maximal extensibility. If later on, we are processing a motif m ′ that has m as
a suffix, then the MaxExt(m) information could be useful, as it applies to m′ as well because
m′ can also be extended with at most MaxExt(m) symbols (and possibly less). In particular,
we have that if |m′|+ MaxExt(m) < kmin, then we can avoid any further attempt to extend
m′ because there is no hope to reach length kmin for motifs that have m′ as prefix.

mink

MaxExt(m)

Valid model

m m’

MaxExt(m)

Figure 1: Example where the extension of m′ can be avoided, using MaxExt(m), where m
is a suffix of m′, because |m′| + MaxExt(m) < kmin.

As we have seen in Algorithm 1, motifs are considered in lexicographical order by a depth-
first (virtual) visit of the motif tree M. Every time we stop extending a motif, that is, when
we (virtually) backtrack in M, it is either because we found a valid motif of the maximal
length, or because the quorum is no longer satisfied (mα does not satisfy the condition at
step 2, and we start to consider the next one in lexicographical order). More formally, the
analysis the motif m = σ1, . . . , σ|m| with σi ∈ Σ, ∀i = 1 . . . |m|, is abandoned either when m
is valid and |m| = kmax, or m does not satisfy the quorum.

In the first case, m is valid, as are all its prefixes, and |m| = kmax. No information on
the maximal extension of m nor of its prefixes can be of any use because all motifs having a
prefix of m as suffix can in general still be extended as much as necessary to reach at least the
length kmin. For this reason, we set MaxExt(m) = +∞, meaning that m can be extended
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possibly more than we are computing.
In the second case, m does not satisfy the quorum while all its prefixes do. For reasons

that will be clearer later, we chose to only use the maximal extensibility information of
motifs of length up to kmin − 1, hence this case can be subdivided into two subcases. When
a motif m cannot be extended anymore and it has not reached the length kmin − 1, we
set MaxExt(m) = 0. If the motif has reached a length h between kmin − 1 and kmax,
we set MaxExt(〈mα|kmin−1) = h − (kmin − 1), where 〈mα|kmin−1 is the prefix of length
kmin − 1 of mα. Since it can be that MaxExt(〈mα|kmin−1) had already received some value
because a previous extension of 〈mα|kmin−1 was interrupted, then we change the value of
MaxExt(〈mα|kmin−1) only if we are increasing it, as maximal extensibility of a motif refers
to its longest extension. We assume that all maximal extensibility values are initially set to
−1, hence the first attribution to MaxExt(〈mα|kmin−1) will always increase its value.

In all the cases above, the algorithm does not consider any further extension of m, and
backtracks. This backtracking consists in either replacing the last letter σ |m| of m (line 1), or
considering a shorter motif which in general shares a prefix with m, if σ|m| was the last letter of
the alphabet Σ. In this latter case, the whole subtree rooted at the node spelling σ1 . . . σ|m|−1

has been (virtually) completely visited. Thus, we have all the information necessary to set
the value of MaxExt(σ1 . . . σ|m|−1) according to MaxExt(x) = 1+maxα∈Σ MaxExt(xα), for
all valid motifs x such that |x| < kmin − 1. If the letter σ|m|−1 was the last of the alphabet,
then the backtracking goes further. In that case, also the MaxExt information concerning
the word σ1 . . . σ|m|−2 can be filled in in the same way, and so on as long as we (virtually)
climb up in the tree.

As mentioned before, maximal extensibility information can be used for motifs whose ex-
tension is being considered and for which this information could actually prevent some useless
attempts. Namely, assume we are trying to extend the motif m = σ1, σ2 . . . , σ|m|. Since the
motifs are considered by means of a depth-first search on the virtual motif tree, we obviously
do not know the value of MaxExt(m) yet. Moreover, we know MaxExt(σ2, . . . , σ|m|) only
if it lexicographically precedes m, that is, it has already been virtually visited in the motif
tree. If this is not the case, we check whether MaxExt(σ3, . . . , σ|m|) is already known, and
so on, possibly until the singleton σ|m|. If they are all lexicographically greater than m, then
no maximal extension information can be used for m, but if for any of them MaxExt is
known and it holds that the maximal possible extension is not enough to reach kmin, then
the information is useful as it guarantees that attempting to further extend m is useless.

Lemma 1 Let w ∈ Σ∗. We have MaxExt(w) ≤ MaxExt(v) for each v which is a suffix of
w.

Proof: Let MaxExt(w) = k, there exists s ∈ Σk such that the motif ws is valid, that is,
it appears in at least q sequences, and no longer string in Σ∗ has the same property. Let us
now assume that there is a suffix v of w such that MaxExt(v) = j < k. Then there exists
t ∈ Σj with j < k, and no longer t, such that the motif vt is valid. However, we know that
there exists s ∈ Σk such that ws appears in at least q sequences. Since vs is a suffix of ws,
and since it satisfies the quorum, then the hypothesis is contradicted. �

A consequence of Lemma 1 is that longer suffixes of m can give us more tight bounds on
the maximal extensibility information with respect to shorter ones. Therefore, since we start
by checking the longest one, as soon as we find a suffix of m that enables us to state that m
is not worth further attempts, then we can stop checking the other (shorter) suffixes. That
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is, if we find a suffix |m〉j = σj, . . . , σ|m| of m, with 1 < j ≤ |m|, such that MaxExt(|m〉j)
is not enough for m to reach kmin because MaxExt(|m〉j) + |m| < kmin, then we can quit
attempting m and all its extensions, and we can consequently update MaxExt(m). On the
other hand, if no suffix |m〉j of m is such that MaxExt(|m〉j)+ |m| < kmin, then the maximal
extension does not disallow to reach kmin. In this case, we have to go on trying to extend m
even if it might be the case that it will never reach the minimal length.

The algorithm for single motif extraction using the maximal extensibility information is
presented in Algorithm 2. For simplicity, we denote in the same way a node x and the word
spelled by the path from the root to x. Moreover, recall that we use 〈mα|kmin−1 to denote
the prefix of mα of length kmin − 1, and |x〉|x|−1 to denote the suffix of x of length |x| − 1.
Finally, with regard to step 3, recall that we assumed that all maximal extensibility values
are initially set to −1.

Algorithm 2 Single motif extraction with maximal extensibility information

ExtractSingleMotif(motif m)

1. for all α ∈ Σ do

2. x := mα

3. repeat x := |x〉|x|−1 until (x = root or MaxExt(x) 6= −1)

4. if x 6= root and MaxExt(x) + |mα| < kmin then

5. MaxExt(mα) := MaxExt(x)

6. stop spelling mα and continue

7. if mα is valid then

8. if |mα| ≥ kmin then spell out the valid motif

9. if |mα| < kmax then ExtractSingleMotif(mα)

10. else MaxExt(〈mα|kmin−1) := +∞

11. else

12. if |mα| < kmin then MaxExt(mα) := 0

13. else if MaxExt(〈mα|kmin−1) < |mα| − (kmin − 1) then MaxExt(〈mα|kmin−1) := |mα| − (kmin − 1)

14. if |m| < (kmin − 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

2.1.1 Complexity analysis

The time complexity of Algorithm 2 remains the same as for Algorithm 1 in the worst case.
Nevertheless, the proposed improvement has (very positive) effects on the average case. Next
we show how to compute, in average, the ratio between the number of attempted extensions by
RISO and RISOTTO for single motif extraction and compute the limit from which RISOTTO
performs better than RISO.

Assume that the dataset has r planted random motifs of size t, where each motif can
be extracted with at most e mismatches, and that the remaining text is uniformly random.
This assumption captures the fact that we want to analyze the ratio between the number
of attempted extensions by RISO and RISOTTO in the context of a dataset with highly
correlated sequences (meeting the application requirements to biological datasets).

Let Mi be the random variable that gives the number of extracted motifs of size i with
at most e mismatches for the assumed dataset, where 0 ≤ i ≤ t. Clearly, we have that
P (M0 = 1) = 1 and P (Mt ≥ r) = 1. The number of attempted extensions by RISO at level
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i > 0 (when the recursion step is at level i) is given by the random variable

Ei = Mi−1|Σ|,

and the total number of attempted extensions for the extraction of a single motif of size k
is given by Rk =

∑k
i=1 Ei. On the other hand, RISOTTO will only extend words at level

i if they fulfill the maximum extensibility requirement. Therefore the number of attempted
extensions by RISOTTO at level i is given by

E′
i = Mi−1|Σ|(1 − p(i)),

where p(i) is the probability of a i-word having maximal extensibility information to avoid
its extension. Furthermore, the total number of attempted extensions by RISOTTO for the
extraction of a single motif of size k is given by R′

k =
∑k

i=1 E′
i.

We conclude that to compute the average value of
R′

k

Rk
we need to determine the average of

the random variables Mi and the values p(i), for i = 1, . . . , k. We proceed by computing the
average values of Mi. Clearly, a planted motif of size t has t − i + 1 segments of size i (con-
sidering overlapping). Observe that the average number of mismatches of the e-occurrences
of an extracted motif of size t is given by

e =
e

∑

j=0

j

(

t

j

)

(|Σ| − 1)j

ν(e, t)
.

Hence, if we assume the mismatches to distribute uniformly over the segments, the average
number of mismatches of the segments of size i of the e-occurrences is ei = i

t
e. Thus, the

motifs extracted at level i due to the planted motifs are all the neighbors differing at most
(e − ei) letters from the segments of size i of the planted motifs. Since there are r(t − i + 1)
segments of size i, the average number of extracted motifs of size i with at most e mismatches
due to the planted motifs is

T i = |Σ|i





r(t−i+1)−1
∑

j=0

(

1 −
ν(e − ei, i)

|Σ|i

)j ν(e − ei, i)

|Σ|i



 .

Finally, to determine the average value of Mi, we need to take into account the motifs ex-
tracted from the random part of the text, and so, we have

M i = T i + (|Σ|i − T i)(1 − πi)

where πi is the probability of a random word of size i not being extracted with quorum q
from a set of N sequences. Given that the probability of an e-neighbor of a word of size i not
appearing in a random text of size n is

δ(i, e, n) = (1 − 1/|Σ|i)(n−i+1)ν(e,i) ≈ (1 − 1/|Σ|i)nie|Σ|e ,

the value of πi can be computed by the following binomial

πi =

q−1
∑

j=0

(

N

j

)

δ(i, e, n)N−j(1 − δ(i, e, n))j .
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We finalize by computing the probability p(i). Since the probability of a suffix of a random
word being lexicographically smaller than the random word is 1

2 , we have that

p(i) =
i

∑

j=1

1

2j
γk−i

where γk−i is the probability of the suffix of size k − i to have information to avoid the
extension. Notice that γk−i is the probability of the suffix of size k − i not being extended to
a size greater than k − 1, and is given by

γk−i = πk−i + (1 − πk−i)π
|Σ|
k−i+1 + (1 − πk−i)(1 − π

|Σ|
k−i+1)π

|Σ|2

k−i+2 + ...

=
i−1
∑

j=0

π
|Σ|j

k−i+j

j
∏

`=1

(1 − π
|Σ|j−`

k−i+j−`) .

To understand when RISOTTO starts to provides a gain over RISO, it is important to
look to E′

i and Ei. Note that if Mi−1 is larger than Mi, E′
i will be much smaller than Ei if

p(i) is close to 1. Moreover, as soon as random motifs start to disappear, Mi−1 will be larger
than Mi, which happens when πi is close to 1. Both πi and p(i) depend tightly of δ(i, e, n),
that is, if δ(i, e, n) is close to 0, so are πi and p(i), and if δ(i, e, n) is close to 1, so are πi and
p(i). Since δ(i, e, n) behaves like a Dirac cumulative function for large values of n, that is, it
jumps very fast from 0 to 1, we just need to solve the equation δ(i, e, n) = 1/2 for the variable
i to grasp when RISOTTO starts to be faster than RISO, which is just slightly before the
solution. The solution of that equation is the fixed point of the following function

f(x) = (− log(1 −
1

2|Σ|e xe n
)/ log(Σ)).

Given that f(x) is contractive, that is, its derivative function takes values in the interval
(−1, 1), the fixed point can be computed by iterating f over an initial value. Finally, notice
that the fixed point increases with the values of e, n and Σ.

With the previous analysis, we have all the machinery necessary for computing the ratio
between the expected number of attempted extensions between RISO and RISOTTO, as
well as, from which point RISOTTO performs better than RISO. As an example, the ratio
between the expected number of extensions attempted by RISOTTO and RISO for a dataset
consisting of N = 100 sequences of size n = 1000 where we planted r = 1 motif of size
t = k = 5..20, with up to e = 2 mismatches, and quorum q = 100, is given in Figure 2. For
the dataset considered, the fixed point for f(x) is x = 10.6616.

3 Structured motif extraction

A structured motif is a pair (m, d) where m = (mi)1≤i≤p is a p-tuple of single motifs and
d = (dmini

, dmaxi
)1≤i<p is a (p−1)-tuple of pairs, denoting p−1 intervals of distance between

the p single motifs. Each element mi of a structured motif is called a box and its minimal and
maximal length denoted by kmini

and kmaxi
, respectively. The structured motif extraction

problem takes as parameters N input sequences, a quorum q ≤ N , p maximal error rates
(ei)i≤1≤p (one for each of the p boxes), p minimal and maximal lengths (kmini

)i≤1≤p and
(kmaxi

)i≤1≤p (one for each of the p boxes), and p−1 intervals of distance (dmini
, dmaxi

)i≤1≤p−1
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Figure 2: Ratio between the expected number of extensions attempted by RISOTTO and
RISO (cf Figure 3 at Section 4 to compare theoretical with experimental results obtained in
the same set).

(one for each pair of consecutive boxes). Given these parameters, the problem consists in
searching for the contents of the boxes, that is the motifs, that have the structure defined by
the parameters above and that satisfy the quorum. The algorithm for single motif extraction
introduced in [13] is the ancestor of a couple of others [3, 10] that infer structured motifs.
The optimisation introduced in this paper can be applied to any of them.

In a few words, the algorithm first builds the factor tree T of the input sequences, then
it searches for all valid motifs of length at least kmin and up to kmax (as in [13]) and, after
updating the data structure (see [3] for details), checks whether there is a second valid motif
(again as in [13]) with the required interval between them. More formally, the algorithm is
described by Algorithm 3 assuming for simplicity that p = 2, where the motif m is the one
whose extension is being attempted, and the value i indicates whether we are dealing with
the first or the second box. Finally, λ denotes the empty word.

Algorithm 3 Structured motif extraction

ExtractStructuredMotif(motif m, box i)

1. for all α ∈ Σ do

2. if mα is valid then

3. if |mα| ≥ kmini
then

4. if i = 2 then spell out the valid motif

5. else update T to ExtractStructuredMotif(λ,2)

6. if |mα| < kmaxi
then ExtractStructuredMotif(mα, i)

3.1 Using maximal extensibility of factors

In the case of structured motifs, the maximal extensibility information for the first box of a
motif should be updated as described in Section 2.1. However, any failure in attempting to
extend a motif during the search of a second box cannot update any value of MaxExt because
it refers only to parts of the text that follow a specific first box at a specific distance. In fact,
when a first box m1 of a structured motif is fixed at any given step, the maximal extensibility
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information that concerns the whole sequence is in general an upper bound on the maximal
extensibility of fragments of the sequence that are at a given distance from the occurrences
of m1. Given this observation, a possibility is to use the maximal extensibility information
of the first box when searching and trying to extend a second box. Another possibility,
while attempting to find a motif for the second box, is to compute and store tighter maximal
extensibility information which we can use for the second box being attempted as long as
the first box is fixed. In the following, we only address the first alternative, that is, only the
first box stores extensibility information. The conditions needed for our optimisation to be
applicable in the case of structured motifs may hold even more frequently than in the case of
single motifs. In fact, since the search for a valid motif as second box is made after a valid
motif for the first box is found, maximal extensibility information may be known also for the
whole motif whose extension is attempted and not just for its prefixes. In other words, it may
happen that when Algorithm 3 is called with parameters m and 2, the value of MaxExt(m)
is already known. Proper suffixes are thus not the only candidates to give useful information
when we are trying to find a motif for the second box. The extensibility information can be
used as for the case of single motifs except that one has to deal with different error rates among
boxes. Indeed, e2 must be less than or equal to e1 in order for the extensibility information to
be useful for the second box. Otherwise, the maximal extensibility information stored for the
first box may be too restrictive, and if it is used, it may cancel the extension of valid motifs.
The algorithm for structured motif extraction using the maximal extensibility information is
presented in Algorithm 4. Similarly to the case of single motif extraction, the time complexity

Algorithm 4 Structured motif extraction with maximal extensibility information

ExtractStructuredMotif(motif m, box i)

1. for all α ∈ Σ do

2. if i = 1 or e2 ≤ e1 then

3. x := mα

4. while (x 6= root or MaxExt(x) = −1) x := |x〉|x|−1

5. if x 6= root and MaxExt(x) + |mα| < kmini
then

6. if i = 1 then MaxExt(mα) := MaxExt(x)

7. stop spelling mα and continue

8. if mα is valid then

9. if |mα| ≥ kmini
then

10. if i = 2 then spell out the valid motif

11. else follow box-links and update T to ExtractStructuredMotif(λ,2)

12. if |mα| < kmaxi
then ExtractStructuredMotif(mα, i)

13. else if i = 1 then MaxExt(〈mα|kmin1
−1) := +∞

14. else if i = 1 then

15. if |mα| < kmin1
then MaxExt(mα) := 0

16. else if MaxExt(〈mα|kmin1
−1) < |mα| − (kmin1

− 1) then MaxExt(〈mα|kmin1
−1) := |mα| − (kmin1

− 1)

17. if i = 1 and |m| < (kmin1
− 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

of Algorithm 4 remains the same as for Algorithm 3 in the worst case, and the improvement
proposed accounts only for the average case, as we shall verify in the next section.
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4 Implementation and experimental results

In order to verify the improvement proposed in this paper, a C implementation of the maximal
extensibility algorithm, called RISOTTO1, was made. The new implementation was tested
against a C implementation of the algorithm presented in [3] and called RISO. The results of
the experiments we made show a sensible improvement for both single and structured motif
extraction when using maximal extensibility information. As we shall see in this section,
maximal extensibility may cost some extra space, which is a delicate issue for large datasets,
but it can definitely save some hopeless visits, and in general it results very efficient.

We start with some considerations concerning the storage of extensibility information. As
we have seen in Section 2.1, due to the order in which motifs are considered, we have that
only certain subwords of motifs can give useful information concerning maximal extensibility,
namely, those that are lexicographically smaller. Since no motif is smaller than itself, we
actually only use the MaxExt information of motifs that are shorter than the current one,
that is, they are proper suffixes. Therefore, since the condition to check is whether or not we
can hope to reach the kmin length, then we make use of the MaxExt data only for strings of
length at most kmin − 1. Hence, it is not necessary to store this information for motifs that
have length kmin or more for the purpose mentioned above. Let us now discuss how much
space is required to store the extensibility information until level kmin −1. We say that a tree
is uncompact complete if it is a trie where all possible nodes are present. There is thus no arc
whose label contains more than one letter. A previous result [1] makes use of some statistical
analysis for stating that a suffix tree of a text of length n is expected to be uncompact
complete at the log|Σ|(n) top levels, where Σ is the alphabet of the text. This fact suggests a
model to store extensibility information: a static data structure to keep the MaxExt values
until level log|Σ|(n), and a dynamic structure for deeper levels. Since we are interested in
the DNA alphabet (composed of the four nucleotides A,C,G, and T ), then we have that our
suffix tree is uncompact complete at the top log4(n) levels where n is the size of the input
sequence s. The function log4(n) reaches 10 for n ≈ 106, it is greater than 11 for n = 107, it is
more than 13 for n = 108, and nearly 15 for n = 109. These values correspond to reasonable
values for the minimal length kmin of the motif, and they are reached for values n of the text
size corresponding to quite big datasets. In the RISOTTO implementation, we took all the
observations above into consideration. Since kmin has to be relatively small for our approach
to be tractable spacewise, we considered only 1 byte (a char in C) to store MaxExt values.
In this case, extensibility values must be less than 256, which is quite reasonable. To build a
static data structure to store such values until level z, we need z +1 1-byte arrays, where the
j-th array has size |Σ|j with 0 ≤ j ≤ z. Therefore, for the case of DNA, the total amount of

memory required is 4z+1−1
3 bytes. This function gives us values of 1.3MB for z = 10, 5.3MB

for z = 11, 85.3MB for z = 13, and 1.3GB for z = 15. In our experiments, we achieved an
optimum trade-off between memory allocation/management and maximal extensibility gain
when z = 10. Taking this observation into account, we only allocate values for MaxExt until
level z = min{10, kmin − 1}, even for large values of kmin, and disregard deeper levels as well
as the dynamic data structure mentioned above. Nevertheless, we allowed this z level to be
an implementation parameter. In the end, considering z = min{10, kmin − 1}, RISOTTO

requires at most 1.3MB more that RISO for DNA databases, being more than twice faster
as we shall see next.

1
RISOTTO is available at http://algos.inesc-id.pt/∼asmc/software/riso.html.
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To test maximal extensibility performance we used several randomly generated (with a
uniform distribution over the four letters size DNA alphabet) synthetic datasets with planted
structured motifs. Each dataset consists of 100 sequences of size 1000 where we planted one
motif, possibly structured into several boxes, with 2 mismatches per box. We ran both RISO

and RISOTTO requiring a quorum q = 100 and at most 2 mismatches per box so that
the output contains at least the planted motif. For each dataset, we made several runs for
increasing lengths of the motifs. In particular, given the number of boxes of the structured
motifs (in our tests there are p boxes for p = 1, . . . , 4), we have increased the size of the boxes
ranging from 5 to 20. As a result, the total motifs size (without counting the gaps) ranges
from 5 to 80. For each p (number of boxes), we have plotted in Figure 3, against the size of
the motif (x axis), the ratio between the number of extensions attempted by RISOTTO and
those by RISO (y axis). Given than RISOTTO only saves useless attempts, this equals the
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Figure 3: Ratio between the number of extensions attempted by RISOTTO and RISO (cf
Figure 2 at Section 2.1.1 to compare theoretical with experimental results obtained in the
same set).

percentage of saved calls of the recursive procedure. For one box (Figure 3 top left) we have
depicted the results for several runs, while for two, three and four boxes (Figure 3 top right
and bottom) there are one curve for the inference of each box of the structured model. As
one would expect, the attempts saved are more when the length of the motif increases and, in
particular, the improvement starts when the length of the box is about 10 (this value depends
in general from the input sequence and the alphabet size). For one box (see Figure 3 top
left), the number of attempted extension of RISOTTO decreases fast to 40% with respect to
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RISO (for growing values of the length of the motifs). Even better results, getting as good
as attempting only 20% of the extensions of RISO, were achieved when extracting an i-th
box with 2 ≤ i ≤ p (see Figure 3 (top right and bottom)). Moreover, we present the ratio of
speed performance of the computation of RISOTTO with respect to that of RISO. This is
shown for all tests together in Figure 4 for all possible sizes of the boxes. One can see that
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Figure 4: Ratio between performance of RISOTTO and RISO.

the best relative performance is achieved for the first boxes (that is where it is more needed
because the search space is very large and noisy), where RISOTTO is up to 2.4 faster than
RISO.

Finally, in [11] a challenging problem was launched that concerned finding all single motifs
of length 15 with at most 4 mismatches in 20 texts of size 600. We ran both RISO and
RISOTTO on such instances. We observe a speedup of 1.6 of RISOTTO over RISO. We
actually believe that a true challenge should involve texts of larger size. Therefore, we ran tests
with the same parameters (length 15 and at most 4 mismatches) on larger input sequences.
The results confirm the 1.6 speedup for sequences of length 700 and 800, 1.3 speedup for
length 900, and then the speedup decreases, but the time required by RISOTTO is always
lower than for RISO.

5 Conclusions and further work

We presented a new algorithm for the extraction of structured motifs in DNA sequences,
improving what is, to our knowledge, the best known exact algorithm for extracting structured
motifs. The improvement consists in storing information concerning maximal extensibility of
factors in order to avoid trying to extend hopeless motifs. Experimental results show that
the improvement works for large motifs, achieving 40% of the computational time. In terms
of space, a trade off between memory allocation/management and maximal extensibility gain
was made, leading up to 1.3MB of memory cost for storing the extensibility information.

The amount of saved visits achieved by extensibility improvement, and their impact on the
performance of motif extraction, depends on the instances and the values of the parameters.
Some further studies on real data or some possible preprocessing could be helpful in detecting
which are the ranges of values of the parameters for which this modification is more suitable.
We also plan to apply RISOTTO to the benchmarks of [6], given that RISOTTO performs

12



better than some of the best tools of such assessment (actually inspired by the SMILE tool
that inspired RISO).

Finally, as we have seen, the structured motif extraction is made considering motifs ac-
cording to a depth-first visit to the motifs tree. It is intuitive to see that in the case of a
breadth-first search visit [14], the maximal extensibility information could be available for all
shorter submotifs of the one being extended. This could result in a possible increase of the
number of saved visits. It could therefore be interesting to perform the modification presented
in this paper for motif extraction algorithms that consider strings in an order corresponding
to a breadth-first search visit of the tree of the motifs.
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